OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4555–4564

Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles

Kelly C. Jorge, Rudimar Riva, Nicolau A. S. Rodrigues, João M. S. Sakamoto, and Marcelo G. Destro  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4555-4564 (2014)
http://dx.doi.org/10.1364/AO.53.004555


View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A laser beam characterization method is reported, which is applicable to arbitrary and ideal laser beam intensity profiles. This method, called the scattered light imaging method (SLIM), is based on scattered light imaging of a laser beam and provides a complete visualization of it in the region of interest. The method was applied to characterize an arbitrary pedestal-shaped beam and compared with a conventional method (camera scanning). The results we presented show that, for arbitrary beams, it seems much more meaningful to know the intensity profile evolution than to determine an M2 value. Therefore the SLIM is a powerful tool for a new and more complete type of laser beam characterization.

© 2014 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(290.0290) Scattering : Scattering
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 21, 2014
Revised Manuscript: May 14, 2014
Manuscript Accepted: May 29, 2014
Published: July 9, 2014

Citation
Kelly C. Jorge, Rudimar Riva, Nicolau A. S. Rodrigues, João M. S. Sakamoto, and Marcelo G. Destro, "Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles," Appl. Opt. 53, 4555-4564 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. S. Kudesia, W. S. O. Rodden, D. P. Hand, and J. D. C. Jones, “Effect of beam quality on single pulse laser drilling,” in Proceedings of the 20th International Congress on Applications of Lasers and Electro-Optics, X. Chen, ed. (Laser Institute of America, 2001), pp. 1439–1448.
  2. D. D. Dlott, “Focus fluctuations in laser-materials interactions,” Opt. Photon. News 13(9), 34–37 (2002). [CrossRef]
  3. A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues (DLAI) (Optical Society of America, 1998), paper MQ1.
  4. A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge methods,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
  5. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
  6. C. Gao and H. Weber, “The problem with M2,” Opt. Laser Technol. 32, 221–224 (2000).
  7. R. D. Niederriter, J. T. Gopinath, and M. E. Siemens, “Measurement of the M2 beam propagation factor using a focus-tunable liquid lens,” Appl. Opt. 52, 1591–1598 (2013). [CrossRef]
  8. . Test methods for laser beam widths, divergence angles and beam propagation ratios. Part 1: Stigmatic and simple beams/ Part 2: General astigmatic beams/ Part 3: Intrinsic and geometrical classification, propagation and details of test methods (ISO, Geneva, 2005).
  9. M. W. Sasnett and T. F. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–32 (1991). [CrossRef]
  10. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
  11. Ophir-Spiricon, Inc., “M-200 Operator’s Manual” (2007).
  12. J. Zheng, S. Zhao, Q. Wang, and L. Chen, “Measurement of beam quality factor (M2) by slit-scanning method,” Opt. Laser Technol. 33, 213–217 (2001).
  13. P. B. Chapple, “Beam waist and M2 measurement using a finite slit,” Opt. Eng. 33, 2461–2466 (1994). [CrossRef]
  14. J. A. Arnaud, W. M. Hubbard, G. D. Madeville, B. de la Clavière, E. A. Franke, and J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775–2776 (1971). [CrossRef]
  15. B. J. Neubert, G. Huber, and W. Scharfe, “On the problem of M2 analysis using Shack-Hartmann measurements,” J. Phys. D 34, 2414–2419 (2001).
  16. B. Schäfer and K. Mann, “Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor,” Appl. Opt. 41, 2809–2817 (2002). [CrossRef]
  17. R. W. Lambert, R. Cortés-Martínez, A. J. Waddie, J. D. Shepard, M. R. Taghizadeh, A. Ha. Greenaway, and D. P. Hand, “Compact optical system for pulse-to-pulse laser beam quality measurement and applications in laser machining,” Appl. Opt. 43, 5037–5046 (2004). [CrossRef]
  18. B. Eppich, G. Mann, and H. Weber, “Measurement of the four-dimensional Wigner distribution of paraxial light sources,” Proc. SPIE 5962, 59622D (2005). [CrossRef]
  19. M. Scaggs and G. Haas, “Real time laser beam analysis system for high power laser,” Proc. SPIE 7913, 791306 (2011). [CrossRef]
  20. O. A. Schmidt, C. Schulze, D. Flamm, R. Brüning, T. Kaiser, S. Schröter, and M. Duparré, “Real-time determination of laser beam quality by modal decomposition,” Opt. Express 19, 6741–6748 (2011). [CrossRef]
  21. C. Schulze, D. Flamm, M. Duparré, and A. Forbes, “Beam-quality measurements using a spatial light modulator,” Opt. Lett. 37, 4687–4689 (2012). [CrossRef]
  22. Y.-Z. Du, G. Feng, H. Li, Z. Cai, H. Zhao, and S. Zhou, “Real-time determination of beam propagation factor by Mach-Zehnder point diffraction interferometer,” Opt. Commun. 287, 1–5 (2013). [CrossRef]
  23. K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “Real-time measurement of laser beam quality factor (M2) by imaging transverse scattered light,” Proc. SPIE 6452, 645215 (2007). [CrossRef]
  24. K. C. Jorge, R. Riva, and N. A. S. Rodrigues, “Dispositivo e método para a caracterização de feixes de laser de baixa e alta potência baseado no espalhamento de luz,” PatentPI 0605596-6 A, DCTA (23November2006).
  25. K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “M2 beam quality measurement of a single pulse of the Nd:YAG laser,” in Proceedings of Conference on Lasers in Manufacturing, Munich, 2009, pp. 323–326.
  26. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965). [CrossRef]
  27. K. Iizuka, Engineering Optics, 3rd ed. (Springer-Verlag, 1983).
  28. Coherent Inc., Coherent Corona Laser System Operator’s Manual, 1/2001. P/N: 0176-654-00, Rev. B.
  29. E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).
  30. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  31. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited