OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4580–4584

Influence of light source–detector spacing on shape of probability density functions of scattering angles in laser Doppler flowmetry

Tiziano Binzoni and Fabrizio Martelli  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4580-4584 (2014)
http://dx.doi.org/10.1364/AO.53.004580


View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Analytical models, describing laser Doppler flowmetry and its derived applications, are based on fundamental assumptions of photon scattering angles. It is shown by means of Monte Carlo simulations that, even in the case these assumptions are correct, the presence of a specific source–detector configuration may bias the shape of the probability density functions describing scattering angle behavior. It is found that these biased shapes are generated by selective filtering of photons induced by a particular source–detector configuration. In some specific cases, this phenomenon might invalidate laser Doppler analytical models.

© 2014 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.5825) Scattering : Scattering theory

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 24, 2014
Revised Manuscript: May 29, 2014
Manuscript Accepted: June 3, 2014
Published: July 9, 2014

Citation
Tiziano Binzoni and Fabrizio Martelli, "Influence of light source–detector spacing on shape of probability density functions of scattering angles in laser Doppler flowmetry," Appl. Opt. 53, 4580-4584 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1970), Vol. 8, pp. 133–200.
  2. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981). [CrossRef]
  3. J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998). [CrossRef]
  4. T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003). [CrossRef]
  5. T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004). [CrossRef]
  6. T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006). [CrossRef]
  7. A. N. Serov, W. Steenbergen, and F. F. M. de Mul, “Method for estimation of the fraction of Doppler-shifted photons in light scattered by a mixture of moving and stationary scatterers,” Proc. SPIE 4001, 178–189 (2000). [CrossRef]
  8. S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013). [CrossRef]
  9. J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998). [CrossRef]
  10. K. Dorschel and G. Muller, “Velocity resolved laser Doppler blood flow measurements in skin,” Flow Meas. Instrum. 7, 257–264 (1996). [CrossRef]
  11. A. Liebert, N. Żołek, and R. Maniewski, “Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study,” Phys. Med. Biol. 51, 5737–5751 (2006). [CrossRef]
  12. S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009). [CrossRef]
  13. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  14. T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006). [CrossRef]
  15. F. F. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, and J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995). [CrossRef]
  16. G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt. 36, 5647–5654 (1997). [CrossRef]
  17. T. Binzoni, T. S. Leung, and D. Van De Ville, “The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations,” Phys. Med. Biol. 54, N303–N318 (2009). [CrossRef]
  18. P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013). [CrossRef]
  19. T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013). [CrossRef]
  20. A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited