OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4594–4603

Basic slit spectroscope reveals three-dimensional scenes through diagonal slices of hyperspectral cubes

Sascha Grusche  »View Author Affiliations

Applied Optics, Vol. 53, Issue 20, pp. 4594-4603 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A basic slit spectroscope is usually held close to the eye to produce the spectrum of a single slit view. However, a more distant viewer may have multiple slit views at once, an effect of dispersion that has been overlooked. Investigations of spectroscopic image geometry reveal that the maximum field of view equals the dispersion angle. Spectrally decoded camera-obscura projections compose three-dimensional images of a scene, emulating a Benton hologram. The images represent diagonal sections of a hyperspectral datacube. Consequently, the spectroscope can be used as an autostereoscopic display and for a fourth technique of hyperspectral data acquisition, named spatiospectral scanning.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(300.0300) Spectroscopy : Spectroscopy
(300.6170) Spectroscopy : Spectra
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:

Original Manuscript: March 25, 2014
Revised Manuscript: May 29, 2014
Manuscript Accepted: May 30, 2014
Published: July 10, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Sascha Grusche, "Basic slit spectroscope reveals three-dimensional scenes through diagonal slices of hyperspectral cubes," Appl. Opt. 53, 4594-4603 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Newton, Opticks: Or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light, 4th ed. (Dover, 1979).
  2. J. Browning, How to Work with the Spectroscope. A Manual of Practical Manipulation with Spectroscopes of All Kinds (Browning, 1882).
  3. F. Theilmann and S. Grusche, “An RGB approach to prismatic colours,” Phys. Educ. 48, 750–759 (2013). [CrossRef]
  4. J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008). [CrossRef]
  5. N. Pahlevan, Z. Lee, C. Hu, and J. R. Schott, “Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for geostationary coastal and air pollution events,” Appl. Opt. 53, 648–665 (2014). [CrossRef]
  6. K. Chance, “Spectroscopic needs for atmospheric pollution measurements from space,” in AIP Conference Proceedings, E. Roueff, ed. (AIP, 2007), pp. 13–18.
  7. M.-F. Nieva and S. Simón-Díaz, “The chemical composition of the Orion star forming region,” Astron. Astrophys. 532, A2 (2011). [CrossRef]
  8. A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013). [CrossRef]
  9. P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010). [CrossRef]
  10. M. Franz and R. Schlichenmaier, “The velocity fields of sunspot penumbrae,” Astron. Astrophys. 508, 1453–1460 (2009). [CrossRef]
  11. W. W. Luo and H. J. Gerritsen, “Seeing the Fraunhofer lines with only a diffraction grating and a slit,” Am. J. Phys. 61, 632–635 (1993). [CrossRef]
  12. K. Thompson, “An easy-to-build spectroscope,” Phys. Educ. 31, 382–385 (1996). [CrossRef]
  13. J. Nemechek, “OSA E-Day 2008: a simple spectroscope,” https://www.youtube.com/watch?v=jaoEmc7kQSI .
  14. Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).
  15. R. D. Lorenz, “A simple webcam spectrograph,” Am. J. Phys. 82, 169–173 (2014). [CrossRef]
  16. J. J. Lunazzi, “Holophotography with a diffraction grating,” Opt. Eng. 29, 15–18 (1990). [CrossRef]
  17. M. Müller and L.-H. Schön, “Virtuelle Beugungsbilder am Gitter,” in Didaktik der Physik. Frühjahrstagung Münster, H. Groetzebach and V. Nordmeier, eds. (PhyDid B, 2011) pp. 1–9.
  18. J. Dong and W. Zhang, “Imaging of virtual objects with a plane periodic grating,” Opt. Lett. 34, 3232–3234 (2009). [CrossRef]
  19. S. Grusche, “Spectral synthesis provides two-dimensional videos on a one-dimensional screen with 360°-visibility and mirror-immunity,” Appl. Opt. 53, 674–684 (2014). [CrossRef]
  20. J. J. Lunazzi and N. I. R. Rivera, “Pseudoscopic imaging in a double diffraction process with a slit,” Opt. Express 10, 1368–1373 (2002). [CrossRef]
  21. J. J. Lunazzi and N. I. R. Rivera, “Pseudoscopic imaging in a double diffraction process with a slit: critical point properties,” J. Opt. Soc. Am. A 23, 1021–1026 (2006). [CrossRef]
  22. J. J. Lunazzi, N. I. R. Rivera, and D. S. F. Magalhães, “Imaging with two spiral diffracting elements intermediated by a pinhole,” J. Opt. Soc. Am. A 25, 1091–1097 (2008). [CrossRef]
  23. J. J. Lunazzi and N. I. R. Rivera, “3D imaging with a linear light source,” in AIP Conference Proceedings, N. U. Wetter and J. Frejlich, eds. (AIP, 2008), pp. 677–680.
  24. S. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545–1546 (1969).
  25. R. Sato and K. Murata, “Cylindrical rainbow hologram,” Appl. Opt. 24, 2161–2165 (1985). [CrossRef]
  26. M. Vannoni, V. Greco, and G. Molesini, “One-step 360° rainbow holography with two spherical mirrors,” Appl. Opt. 40, 633–635 (2001). [CrossRef]
  27. B. J. Jackin and T. Yatagai, “360° reconstruction of a 3D object using cylindrical computer generated holography,” Appl. Opt. 50, H147–H152 (2011). [CrossRef]
  28. M. A. Bershady, “3D spectroscopic instrumentation,” in 3D Spectroscopy in Astronomy, E. Mediavilla, S. Arribas, M. Roth, J. Cepa-Nogué, and F. Sánchez, eds. (Cambridge University, 2010), pp. 87–125.
  29. M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.
  30. N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012). [CrossRef]
  31. B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.
  32. A. Abramov, L. Minai, and D. Yelin, “Spectrally encoded spectral imaging,” Opt. Express 19, 6913–6922 (2011). [CrossRef]
  33. M. A. Bershady, Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (personal communication, 2014).
  34. N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013). [CrossRef]
  35. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013). [CrossRef]
  36. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014). [CrossRef]
  37. Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014). [CrossRef]
  38. G. Høye and A. Fridman, “Mixel camera: a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging,” Opt. Express 21, 11057–11077 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited