OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4611–4615

High-fidelity all-fiber amplification of a gain-switched laser diode

Laura Abrardi, Marek A. Gusowski, and Thomas Feurer  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4611-4615 (2014)
http://dx.doi.org/10.1364/AO.53.004611


View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a multistage erbium fiber amplifier seeded by a gain-switched laser diode operating at a wavelength of 1550 nm and a repetition rate of 1 MHz. The pulse energy is 0.5 μJ, and the pulse duration is 40 ps, resulting in a peak power of 11.4 kW. The three-stage all-fiber amplifier system is designed to avoid any spectral distortions induced by gain saturation or nonlinear effects and high levels of amplified spontaneous emission. The output pulses are close to transform limited with a Gaussian pulse envelope.

© 2014 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 18, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 4, 2014
Published: July 10, 2014

Citation
Laura Abrardi, Marek A. Gusowski, and Thomas Feurer, "High-fidelity all-fiber amplification of a gain-switched laser diode," Appl. Opt. 53, 4611-4615 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4611


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Liu and X. F. Li, “High power tunable picosecond green laser pulse generation by frequency doubling of an Yb-doped fiber power amplifier seeded by a gain switch laser diode,” Laser Phys. 21, 2118–2121 (2011). [CrossRef]
  2. S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40  ps pulses from a gain-switched laser diode,” Opt. Express 19, 1854–1859 (2011). [CrossRef]
  3. H. Liu, C. Gao, J. Tao, W. Zhao, and Y. Wang, “Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode,” Opt. Express 16, 7888–7893 (2008). [CrossRef]
  4. S. Chen, A. Sato, T. Ito, M. Yoshita, H. Akiyama, and H. Yokoyama, “Sub-5-ps optical pulse generation from a 1.55  μm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering,” Opt. Express 20, 24843–24849 (2012). [CrossRef]
  5. D. Taverner, D. Richardson, L. Dong, J. Caplen, K. Williams, and R. Penty, “158  μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378–380 (1997). [CrossRef]
  6. H.-F. Liu, M. Tohyama, T. Kamiya, and M. Kawahara, “Pulse broadening in picosecond amplification by a 1.3  μm InGaAsP traveling-wave amplifier,” Appl. Phys. Lett. 63, 132–134 (1993). [CrossRef]
  7. S. N. Vainshtein, G. S. Simin, and J. T. Kostamovaara, “Deriving of single intensive picosecond optical pulses from a high-power gain-switched laser diode by spectral filtering,” J. Appl. Phys. 84, 4109–4113 (1998). [CrossRef]
  8. S. Chen, M. Yoshita, A. Sato, T. Ito, H. Akiyama, and H. Yokoyama, “Dynamics of short-pulse generation via spectral filtering from intensely excited gain-switched 1.55  μm distributed-feedback laser diodes,” Opt. Express 21, 10597–10605 (2013). [CrossRef]
  9. A. Consoli, J. M. G. Tijero, and I. Esquivias, “Time resolved chirp measurements of gain switched semiconductor laser using a polarization based optical differentiator,” Opt. Express 19, 10805–10812 (2011). [CrossRef]
  10. J. M. Wiesenfeld, R. S. Tucker, and P. M. Downey, “Picosecond measurements of chirp in gain-switched, single-mode injection lasers,” Appl. Phys. Lett. 51, 1307–1309 (1987). [CrossRef]
  11. T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613–615 (1986). [CrossRef]
  12. K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electrooptic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20, 505–507 (2008). [CrossRef]
  13. M. Jinno, “Correlated and uncorrelated timing jitter in gain-switched laser-diodes,” IEEE Photon. Technol. Lett. 5, 1140–1143 (1993). [CrossRef]
  14. Q. Wang, G. Zhu, H. Dong, and N. Dutta, “Timing jitter measurement and its reduction for gain-switched DFB laser,” Proc. SPIE 5349, 255–261 (2004). [CrossRef]
  15. Y. Liu and J. Zhang, “Design of low-timing jitter, stable picosecond optical-pulse source using an uncooled gain-switched Fabry–Perot semiconductor laser with external continuous-wave light injection,” Microwave Opt. Technol. Lett. 53, 2100–2105 (2011).
  16. C. de Dios and H. Lamela, “Improvements to long-duration low-power gain-switching diode laser pulses using a highly nonlinear optical loop mirror: theory and experiment,” J. Lightwave Technol. 29, 700–707 (2011). [CrossRef]
  17. S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011). [CrossRef]
  18. D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwaves Optoelecton. 1, 46–63 (1997).
  19. B. Lanz, B. Ryvkin, E. Avrutin, and J. Kostamovaara, “Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes,” Opt. Express 21, 29780–29791 (2013). [CrossRef]
  20. B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Quantum well laser with an extremely large active layer width to optical confinement factor ratio for high-energy single picosecond pulse generation by gain switching,” Semicond. Sci. Technol. 26, 045010 (2011). [CrossRef]
  21. K. Wada, S. Takamatsu, H. Watanabe, T. Matsuyama, and H. Horinaka, “Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer,” Opt. Express 16, 19872–19881 (2008). [CrossRef]
  22. M. Nakazawa, K. Kazunori, and Y. Kimura, “Transform-limited pulse generation in the gigahertz region from a gain-switched distributed-feedback laser diode using spectral windowing,” Opt. Lett. 15, 715–717 (1990). [CrossRef]
  23. S. M. Riecke, K. Lauritsen, R. Erdmann, M. Uebernickel, K. Paschke, and G. Erbert, “Pulse-shape improvement during amplification and second-harmonic generation of picosecond pulses at 531  nm,” Opt. Lett. 35, 1500–1502 (2010). [CrossRef]
  24. C. J. S. de Matos, R. E. Kennedy, S. V. Popov, and J. R. Taylor, “20  kW peak power all-fiber 1.57  μm source based on compression in air-core photonic bandgap fiber, its frequency doubling, and broadband generation from 430 to 1450  nm,” Opt. Lett. 30, 436–438 (2005). [CrossRef]
  25. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14, 3467–3471 (2006). [CrossRef]
  26. J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core-pumped large-mode-area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007). [CrossRef]
  27. A. L. S. GmbH, http://www.alsgmbh.com .
  28. Polar Laser Laboratories, http://polarlaser-labs.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited