OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4616–4627

Anisotropy of acousto-optic figure of merit in optically isotropic media

Oksana Mys, Myroslav Kostyrko, Mykola Smyk, Oleh Krupych, and Rostyslav Vlokh  »View Author Affiliations

Applied Optics, Vol. 53, Issue 20, pp. 4616-4627 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We suggest a new approach for analyzing spatial anisotropy of an acousto-optic figure of merit (AOFM). The relations for the effective elasto-optic coefficients and the AOFM are derived for all possible types of acousto-optic (AO) interactions in optically isotropic media, including nonsolid-state and solid-state amorphous media and crystals belonging to the cubic system. Our approach allows for finding the optimal geometries of AO interactions characterized by the highest AOFM for a given material. The analysis is carried out on the examples of cubic KBr and KAl(SO4)2×12H2O crystals, which represent different subgroups of the cubic symmetry class.

© 2014 Optical Society of America

OCIS Codes
(160.1050) Materials : Acousto-optical materials
(230.1040) Optical devices : Acousto-optical devices
(260.1180) Physical optics : Crystal optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

Original Manuscript: January 29, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: June 4, 2014
Published: July 10, 2014

Oksana Mys, Myroslav Kostyrko, Mykola Smyk, Oleh Krupych, and Rostyslav Vlokh, "Anisotropy of acousto-optic figure of merit in optically isotropic media," Appl. Opt. 53, 4616-4627 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. G. Vlokh, Spatial Dispersion Phenomena in Parametric Crystal Optics (Vyshcha Shkola, 1984).
  2. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).
  3. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).
  4. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  5. A. Korpel, Acousto-optics (Marcel Dekker, 1996).
  6. C. C. Tsai, Guided-Wave Acousto-Optics (Springer-Verlag, 1990).
  7. I. Martynyuk-Lototska, O. Mys, T. Dudok, V. Adamiv, Ye. Smirnov, and R. Vlokh, “Acoustooptic interaction in α-BaB2O4 and Li2B4O7 crystals,” Appl. Opt. 47, 3446–3454 (2008). [CrossRef]
  8. R. Vlokh and I. Martynyuk-Lototska, “Ferroelastic crystals as effective acoustooptic materials,” Ukr. J. Phys. Opt. 10, 89–99 (2009). [CrossRef]
  9. W. A. Bonner, S. Singh, L. G. Van Uitert, and A. W. Warner, “High quality tellurium dioxide for acousto-optic and non-linear applications,” J. Electron. Mater. 1, 154–164 (1972). [CrossRef]
  10. M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).
  11. M. V. Kaidan, A. V. Zadorozhna, A. S. Andrushchak, and A. V. Kityk, “Cs2HgCl4 crystal as a new material for acoustooptical applications,” Opt. Mater. 22, 263–268 (2003). [CrossRef]
  12. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).
  13. A. S. Andrushchak, E. M. Chernyhivsky, Z. Yu. Gotra, M. V. Kaidan, A. V. Kityk, N. A. Andrushchak, T. A. Maksymyuk, B. G. Mytsyk, and W. Schranz, “Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals,” J. Appl. Phys. 108, 103118 (2010). [CrossRef]
  14. O. A. Buryy, A. S. Andrushchak, O. S. Kushnir, S. B. Ubizskii, D. M. Vynnyk, O. V. Yurkevych, A. V. Larchenko, K. O. Chaban, O. Z. Gotra, and A. V. Kityk, “Method of extreme surfaces for optimizing geometry of acousto-optic interactions in crystalline materials: example of LiNbO3 crystals,” J. Appl. Phys. 113, 083103 (2013). [CrossRef]
  15. J. F. Nye, Physical Properties of Crystals. Their Representation by Tensors and Matrices (Clarendon, 1964).
  16. W. Durr, “Acousto-optic interaction in gases and liquid bases in the far infrared,” Int. J. Infrared Millim. Waves 7, 1537–1558 (1986). [CrossRef]
  17. M. Lainé and A. B. Seddon, “Chalcogenide glasses for acousto-optic devices,” J. Non-Cryst. Solids 184, 30–35 (1995). [CrossRef]
  18. V. Adamiv, I. Teslyuk, Ya. Dyachok, G. Romanyuk, O. Krupych, O. Mys, I. Martynyuk-Lototska, Ya. Burak, and R. Vlokh, “Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses,” Appl. Opt. 49, 5360–5365 (2010). [CrossRef]
  19. D. Royer and E. Dieulesaint, Elastic Waves in Solids I. Free and Guided Propagation (Springer-Verlag, 1996).
  20. R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic, 1969).
  21. R. James Brown, D. C. Lawton, and S. P. Cheadle, “Scaled physical modelling of anisotropic wave propagation: multioffset profiles over an orthorhombic medium,” Geophys. J. Int. 107, 693–702 (1991). [CrossRef]
  22. S. Haussühl, Physical Properties of Crystals: An Introduction (Wiley-VCH, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited