OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 21 — Jul. 20, 2014
  • pp: 4675–4682

Absorption effects in diffusing wave spectroscopy

Erick Sarmiento-Gomez, Beatriz Morales-Cruzado, and Rolando Castillo  »View Author Affiliations

Applied Optics, Vol. 53, Issue 21, pp. 4675-4682 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of absorption in diffusing wave spectroscopy (DWS) was studied using an absorption-dependent diffusive equation for describing the light propagation within a turbid liquid where dielectric microspheres have been embedded. Here, we propose an expression for the time-averaged light intensity autocorrelation function that correctly describes the time fluctuations for the scattered light, in the regime where the diffusion approximation accurately describes the light propagation. This correction was suspected previously, but it was not formally derived from a light diffusive equation. As in the case of no absorption, we obtained that time fluctuations of the scattered light can be related to the mean square displacement of the embedded particles. However, if a correction for absorption is not taken into account, the colloidal dynamics can be misinterpreted. Experimental results show that this new formulation correctly describes the time fluctuations of scattered light. This new procedure extends the applicability of DWS, and it opens the possibility of doing microrheology with this optical method in systems where absorption cannot be avoided.

© 2014 Optical Society of America

OCIS Codes
(000.6590) General : Statistical mechanics
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: March 25, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 5, 2014
Published: July 16, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Erick Sarmiento-Gomez, Beatriz Morales-Cruzado, and Rolando Castillo, "Absorption effects in diffusing wave spectroscopy," Appl. Opt. 53, 4675-4682 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987). [CrossRef]
  2. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988). [CrossRef]
  3. D. A. Weitz and D. J. Pine, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford University, 1993), p. 652.
  4. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990). [CrossRef]
  5. D. D. Kaplan, M. H. Kao, A. Yodh, and D. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993). [CrossRef]
  6. J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6, 438–445 (2001). [CrossRef]
  7. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005). [CrossRef]
  8. F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express 14, 10181–10194 (2006). [CrossRef]
  9. M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010). [CrossRef]
  10. M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1, 1502–1513 (2010). [CrossRef]
  11. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30, 2915–2917 (2005). [CrossRef]
  12. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006). [CrossRef]
  13. U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007). [CrossRef]
  14. Y. Shang, Y. Zhao, R. Cheng, L. Dong, D. Irwin, and G. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett. 34, 3556–3558 (2009). [CrossRef]
  15. Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurement during exercise,” Biomed. Opt. Express 1, 500–511 (2010). [CrossRef]
  16. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application for blood flow detection in deep tissue,” Appl. Opt. 46, 8506–8514 (2007). [CrossRef]
  17. F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy,” Opt. Express 15, 6643–6650 (2007). [CrossRef]
  18. G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2, 251–257 (1997). [CrossRef]
  19. T. Gisler and D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998). [CrossRef]
  20. F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999). [CrossRef]
  21. A. Mukhhopadhyay and S. Granick, “Micro- and nanorheology,” Curr. Opin. Colloid Interface Sci. 6, 423–429 (2001). [CrossRef]
  22. F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
  23. N. Willenbacher and C. Oelschlaeger, “Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry,” Curr. Opin. Colloid Interface Sci. 12, 43–49 (2007). [CrossRef]
  24. T. D. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010). [CrossRef]
  25. D. Lopez-Diaz and R. Castillo, “Microrheology of solutions embedded with thread-like supramolecular structures,” Soft Matter 7, 5926–5937 (2011). [CrossRef]
  26. A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993). [CrossRef]
  27. L. Cipelleti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214–3221 (1999). [CrossRef]
  28. S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996). [CrossRef]
  29. M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992). [CrossRef]
  30. P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988). [CrossRef]
  31. L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994). [CrossRef]
  32. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989). [CrossRef]
  33. S. L. Jacques, “Time resolved propagation of ultrashort laser pulses with turbid tissues,” Appl. Opt. 28, 2223–2229 (1989). [CrossRef]
  34. Y. Hasegawa, Y. Yamada, M. Tamura, and Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991). [CrossRef]
  35. G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996). [CrossRef]
  36. K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995). [CrossRef]
  37. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994). [CrossRef]
  38. T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend of absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997). [CrossRef]
  39. M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997). [CrossRef]
  40. T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997). [CrossRef]
  41. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  42. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999). [CrossRef]
  43. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  44. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943). [CrossRef]
  45. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef]
  46. L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002). [CrossRef]
  47. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef]
  48. S. A. Prahl, Inverse Adding Doubling, http://omlc.ogi.edu/software/iad/index.html .
  49. H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 1.
  50. H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 2.
  51. B. M. Cruzado, S. V. y Montiel, and J. A. D. Atencio, “Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media,” Biomed. Opt. Express 4, 433–446 (2013). [CrossRef]
  52. J. Galvan-Miyoshi and R. Castillo, “Absolute values of transport mean free path of light in non-absorbing media using transmission and reflectance measurements,” Rev. Mex. Fis. 54, 257–264 (2008).
  53. J. Galvan-Miyoshi, J. Delgado, and R. Castillo, “Diffusing wave spectroscopy in Maxwellian fluids,” Eur. Phys. J. E 26, 369–377 (2008). [CrossRef]
  54. G. M. Hale and M. R. Querry, “Optical constants of water in the 200  nm to 200  m wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited