OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 21 — Jul. 20, 2014
  • pp: 4700–4707

Optical encryption of unlimited-size images based on ptychographic scanning digital holography

Qiankun Gao, Yali Wang, Tuo Li, and Yishi Shi  »View Author Affiliations

Applied Optics, Vol. 53, Issue 21, pp. 4700-4707 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ptychographic scanning operation is introduced into digital holography to expand the field-of-view (FOV). An optical image encryption method based on this technique is further proposed and analyzed. The plaintext is moved sequentially in the way of ptychographic scanning and corresponding pairs of phase-shifted interferograms are recorded as ciphertexts. Then the holographic processing and the ptychographic iterative reconstruction are both employed to retrieve the plaintext. Numerical experiments demonstrate that the proposed system possesses high security level and wide FOV. The proposed method might also be used for other potential applications, such as three-dimensional information encryption and image hiding.

© 2014 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(090.1995) Holography : Digital holography
(060.4785) Fiber optics and optical communications : Optical security and encryption
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:

Original Manuscript: March 11, 2014
Revised Manuscript: June 11, 2014
Manuscript Accepted: June 11, 2014
Published: July 17, 2014

Qiankun Gao, Yali Wang, Tuo Li, and Yishi Shi, "Optical encryption of unlimited-size images based on ptychographic scanning digital holography," Appl. Opt. 53, 4700-4707 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009). [CrossRef]
  2. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
  3. S. Liu, C. Guo, and J. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014). [CrossRef]
  4. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier-plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  5. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584–1586 (2004). [CrossRef]
  6. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier-domain,” Opt. Lett. 25, 887–889 (2000). [CrossRef]
  7. S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,” Opt. Lett. 26, 1242–1244 (2001). [CrossRef]
  8. S. Liu, L. Yu, and B. Zhu, “Optical image encryption by cascaded fractional Fourier-transforms with random phase filtering,” Opt. Commun. 187, 57–63 (2001). [CrossRef]
  9. B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier-domains,” Opt. Lett. 28, 269–271 (2003). [CrossRef]
  10. Z. Liu and S. Liu, “Double image encryption based on iterative fractional Fourier-transform,” Opt. Commun. 275, 324–329 (2007). [CrossRef]
  11. L. Chen and D. Zhao, “Optical image encryption with Hartley transforms,” Opt. Lett. 31, 3438–3440 (2006). [CrossRef]
  12. Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18, 12033–12043 (2010). [CrossRef]
  13. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35, 3817–3819 (2010). [CrossRef]
  14. W. Chen and X. Chen, “Structured-illumination-based diffractive imaging and its application to optical image encryption,” Opt. Commun. 285, 2044–2047 (2012). [CrossRef]
  15. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010). [CrossRef]
  16. J. Zang, Z. Xie, and Y. Zhang, “Optical image encryption with spatially incoherent illumination,” Opt. Lett. 38, 1289–1291 (2013). [CrossRef]
  17. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28–30 (2000). [CrossRef]
  18. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000). [CrossRef]
  19. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000). [CrossRef]
  20. H. Kim, D. H. Kim, and Y. H. Lee, “Encryption of digital hologram of 3D object by virtual optics,” Opt. Express 12, 4912–4921 (2004). [CrossRef]
  21. L. Yu and L. Cai, “Multidimensional data encryption with digital holography,” Opt. Commun. 215, 271–284 (2003). [CrossRef]
  22. X. Meng, L. Cai, X. Xu, X. Yang, X. Shen, G. Dong, and Y. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006). [CrossRef]
  23. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008). [CrossRef]
  24. N. Zhu, Y. Wang, J. Liu, J. Xie, and H. Zhao, “Optical image encryption based on interference of polarized light,” Opt. Express 17, 13418–13424 (2009). [CrossRef]
  25. Y. Han and Y. Zhang, “Optical image encryption based on two beams’ interference,” Opt. Commun. 283, 1690–1692 (2010). [CrossRef]
  26. H. Di, K. Zheng, X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, T. C. Poon, and C. Zhou, “Multiple-image encryption by compressive holography,” Appl. Opt. 51, 1000–1009 (2012). [CrossRef]
  27. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008). [CrossRef]
  28. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier-holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009). [CrossRef]
  29. W. Hoppe, “Trace structure analysis, ptychography, phase tomography,” Ultramicroscopy 10, 187–198 (1982). [CrossRef]
  30. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef]
  31. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007). [CrossRef]
  32. J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Academic, 2008), pp. 87–184.
  33. Y. Wang, T. Li, Q. Gao, S. Zhang, and Y. Shi, “Application of diffractive optical elements for controlling the light beam in ptychography,” Opt. Eng. 52, 091720 (2013). [CrossRef]
  34. Y. Shi, Y. Wang, and S. Zhang, “Generalized ptychography with divers’ probes,” Chin. Phys. Lett. 30, 054203 (2013). [CrossRef]
  35. Y. Shi, Y. Wang, T. Li, Q. Gao, H. Wan, S. Zhang, and Z. Wu, “Ptychographic imaging algorithm with a single random phase encoding,” Chin. Phys. Lett. 30, 074203 (2013). [CrossRef]
  36. Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38, 1425–1427 (2013). [CrossRef]
  37. W. Chen, G. Situ, and X. Chen, “High-flexibility optical encryption via aperture movement,” Opt. Express 21, 24680–24691 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited