OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 22 — Aug. 1, 2014
  • pp: E19–E25

Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus

Manuel Martínez-Corral, Adrián Dorado, Héctor Navarro, Genaro Saavedra, and Bahram Javidi  »View Author Affiliations


Applied Optics, Vol. 53, Issue 22, pp. E19-E25 (2014)
http://dx.doi.org/10.1364/AO.53.000E19


View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The original aim of the integral-imaging concept, reported by Gabriel Lippmann more than a century ago, is the capture of images of 3D scenes for their projection onto an autostereoscopic display. In this paper we report a new algorithm for the efficient generation of microimages for their direct projection onto an integral-imaging monitor. Like our previous algorithm, the smart pseudoscopic-to-orthoscopic conversion (SPOC) algorithm, this algorithm produces microimages ready to produce 3D display with full parallax. However, this new algorithm is much simpler than the previous one, produces microimages free of black pixels, and permits fixing at will, between certain limits, the reference plane and the field of view of the displayed 3D scene. Proofs of concept are illustrated with 3D capture and 3D display experiments.

© 2014 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.2040) Instrumentation, measurement, and metrology : Displays

History
Original Manuscript: February 19, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 23, 2014
Published: May 29, 2014

Citation
Manuel Martínez-Corral, Adrián Dorado, Héctor Navarro, Genaro Saavedra, and Bahram Javidi, "Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus," Appl. Opt. 53, E19-E25 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-22-E19


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Ng, “Digital light field photography,” Ph.D. dissertation (Stanford University, 2006).
  2. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908). [CrossRef]
  3. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001). [CrossRef]
  4. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25, 924–934 (2006). [CrossRef]
  5. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992). [CrossRef]
  6. T. Georgiev and A. Lumsdaine, “The focused plenoptic camera and rendering,” J. Electron. Imaging 19, 021106 (2010).
  7. F. Okano, J. Aral, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999). [CrossRef]
  8. H. Hiura, T. Mishina, J. Arai, K. Hisatomi, Y. Iwadate, T. Ito, and S. Yano, “A study on accommodation response and depth perception in viewing integral photography,” Proceedings of 3D Systems and Applications, Osaka (Japan) (2013), paper P2-2.
  9. F. Okano, H. Hoshino, J. Arai, and I. Yayuma, “Real time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997). [CrossRef]
  10. A. Aggoun, “Pre-processing of integral images for 3-D displays,” J. Disp. Technol. 2, 393–400 (2006). [CrossRef]
  11. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13, 9175–9180 (2005). [CrossRef]
  12. K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE Transactions on Information and Systems E90-D, 233–241 (2007). [CrossRef]
  13. H. Deng, Q. Wang, and D. Li, “Method of generating orthoscopic elemental image array from sparse camera array,” Chin. Opt. Lett. 10, 061102 (2012). [CrossRef]
  14. D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47, 1189–1194 (2009). [CrossRef]
  15. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009). [CrossRef]
  16. E. Sahin and L. Onural, “A comparative study of light field representation and integral imaging,” Imag. Sci. J. 58, 28–31 (2010). [CrossRef]
  17. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010). [CrossRef]
  18. J.-H. Jung, J. Kim, and B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett. 38, 76–79 (2013). [CrossRef]
  19. N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988). [CrossRef]
  20. H. Navarro, J. C. Barreiro, G. Saavedra, M. Martínez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20, 890–895 (2012). [CrossRef]
  21. T. Iwane, “Light field camera and IP display,” Proceedings of 3D Systems and Applications, Osaka (Japan) (2013), p. 32.
  22. “3D lightfield camera,” http://www.raytrix.de/ .
  23. “Lightfield based commercial digital still camera,” http://www.lytro.com .
  24. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Disp. Technol. 10, 198–203 (2014). [CrossRef]
  25. H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Disp. Technol. 6, 404–411 (2010). [CrossRef]
  26. J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1181 KB)     
» Media 2: MOV (841 KB)     
» Media 3: MOV (759 KB)     
» Media 4: MOV (1283 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited