OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 22 — Aug. 1, 2014
  • pp: E33–E37

Bistable cholesteric liquid crystal light shutter with multielectrode driving

Cheng-Chang Li, Heng-Yi Tseng, Tsung-Wei Pai, Yu-Ching Wu, Wen-Hao Hsu, Hung-Chang Jau, Chun-Wei Chen, and Tsung-Hsien Lin  »View Author Affiliations


Applied Optics, Vol. 53, Issue 22, pp. E33-E37 (2014)
http://dx.doi.org/10.1364/AO.53.000E33


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An electrically activated bistable light shutter that exploits polymer-stabilized cholesteric liquid crystal film was developed. Under double-sided three-terminal electrode driving, the device can be bistable and switched between focal conic and homeotropic textures with a uniform in-plane and vertical electrical field. The transparent state with a transmittance of 80% and the opaque/scattering state with a transmittance of 13% can be realized without any optical compensation film, and each can be simply switched to the other by applying a pulse voltage. Also, gray-scale selection can be performed by varying the applied voltage. The designed energy-saving bistable light shutter can be utilized to preserve privacy and control illumination and the flow of energy.

© 2014 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.3720) Optical devices : Liquid-crystal devices
(290.0290) Scattering : Scattering
(130.4815) Integrated optics : Optical switching devices

History
Original Manuscript: February 27, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: May 5, 2014
Published: June 16, 2014

Citation
Cheng-Chang Li, Heng-Yi Tseng, Tsung-Wei Pai, Yu-Ching Wu, Wen-Hao Hsu, Hung-Chang Jau, Chun-Wei Chen, and Tsung-Hsien Lin, "Bistable cholesteric liquid crystal light shutter with multielectrode driving," Appl. Opt. 53, E33-E37 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-22-E33


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R.-Q. Ma and D.-K. Yang, “Fréedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E 61, 1567–1573 (2000). [CrossRef]
  2. I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12, 167–181 (2000). [CrossRef]
  3. I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998). [CrossRef]
  4. I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997). [CrossRef]
  5. F. Zhang and D.-K. Yang, “Polymer stabilized cholesteric dichroic dye displays,” SID Symp. Dig. Tech. 33, 469–471 (2002).
  6. W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000). [CrossRef]
  7. Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005). [CrossRef]
  8. H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92, 797–800 (2002). [CrossRef]
  9. Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009). [CrossRef]
  10. R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009). [CrossRef]
  11. H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011). [CrossRef]
  12. H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36, 717–726 (2009). [CrossRef]
  13. J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3, 021702 (2010). [CrossRef]
  14. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19, 23952–23957 (2011). [CrossRef]
  15. C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005). [CrossRef]
  16. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006). [CrossRef]
  17. C. Y. Xiang, X. W. Sun, and X. J. Yin, “Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching,” Appl. Phys. Lett. 83, 5154 (2003). [CrossRef]
  18. M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008). [CrossRef]
  19. Y. Chen, Y. Sun, and G. Yang, “Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes,” Liq. Cryst. 38, 555–559 (2011). [CrossRef]
  20. D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013). [CrossRef]
  21. H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited