OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 23 — Aug. 10, 2014
  • pp: 5109–5116

Temperature nonuniformity occurring during the cooling process of a KDP crystal and its effects on second-harmonic generation

Yingchun Liang, Ruifeng Su, Lihua Lu, and Haitao Liu  »View Author Affiliations

Applied Optics, Vol. 53, Issue 23, pp. 5109-5116 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The temperature nonuniformity occurring during the cooling process of a KDP crystal is studied, along with its effects on the second-harmonic generation (SHG) of a high-average-power laser. A comprehensive model is proposed incorporating principles of thermodynamics, mechanics, and optics, and it is applied to investigate the temperature nonuniformity and its effects. The temperature rise caused by linear absorption is calculated, while the temperature nonuniformity occurring during the cooling process is analyzed using the finite-element method (FEM). The stress induced by the nonuniformity is then studied using the FEM, and the trend of its change is determined. Moreover, the changes in refractive index caused by the stress are calculated, the results of which are used to determine the variations in the induced phase mismatch. The SHG efficiency considering the phase mismatch is eventually obtained by solving the coupling wave equations. The results demonstrate that the temperature nonuniformity has negative effects on the SHG efficiency.

© 2014 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

Original Manuscript: May 16, 2014
Revised Manuscript: July 4, 2014
Manuscript Accepted: July 4, 2014
Published: August 4, 2014

Yingchun Liang, Ruifeng Su, Lihua Lu, and Haitao Liu, "Temperature nonuniformity occurring during the cooling process of a KDP crystal and its effects on second-harmonic generation," Appl. Opt. 53, 5109-5116 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007). [CrossRef]
  2. N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Megajoule (LMJ) project dedicate to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74, 147–154 (2005). [CrossRef]
  3. Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, and Z. Dang, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013). [CrossRef]
  4. V. G. Dmitriev and Y. V. Yur’ev, “Calculation of thermo-optical distortions of some nonlinear crystals during second-harmonic generation,” IEEE J. Quantum Electron. 28, 1002–1006 (1998). [CrossRef]
  5. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006). [CrossRef]
  6. M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: a theoretical model,” Opt. Express 18, 18732–18743 (2010). [CrossRef]
  7. M. Sabaeian, “Analytical solutions for anisotropic time dependent heat equations with Robin boundary condition for cubic shaped solid state crystals,” Appl. Opt. 51, 7150–7159 (2012). [CrossRef]
  8. M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid state laser,” Appl. Opt. 47, 2317–2325 (2008). [CrossRef]
  9. G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti: Sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045–8055 (2005). [CrossRef]
  10. A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A. M. Michel, and M. Pealat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35, 3667–3669 (2010). [CrossRef]
  11. Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, and T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23, 1016–1018 (1998). [CrossRef]
  12. Z. Y. Ren, J. Q. Zhu, H. B. Huang, and Z. G. Liu, “Numerical research and optimization of convective heat transfer for multi-segment amplifiers,” Opt. Laser Technol. 47, 189–193 (2013). [CrossRef]
  13. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total reflection active mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34, 3439–3441 (2009). [CrossRef]
  14. Y. Tzuk, A. Tai, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40, 262–269 (2004). [CrossRef]
  15. P. Millar, R. B. Brich, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709–717 (2008). [CrossRef]
  16. M. Z. Rossi, F. Lindner, C. L. Blanc, G. Cheriaux, and J. P. Chambaret, “Control of thermal effects for high-intensity Ti:sapphire laser chains,” Appl. Phys. B 70, S193–S196 (2000). [CrossRef]
  17. J. Rothhardt, S. Demmler, S. Hadrich, T. Peschel, J. Limpert, and A. Tunnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett. 38, 763–765 (2013). [CrossRef]
  18. R. A. Hass, “Influence of a constant temperature gradient on the spectral bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113, 523–529 (1995). [CrossRef]
  19. D. G. Xu, J. Q. Yao, B. G. Zhang, R. Zhou, E. B. Li, S. Y. Zhao, X. Ding, W. Q. Wen, Y. X. Niu, J. G. Hu, and P. Wang, “110  W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control,” Opt. Commun. 245, 341–347 (2005). [CrossRef]
  20. D. Pitts and L. Sissom, Schaum’s Outline of Theory and Problems of Heat Transfer (McGraw-Hill, 1998), Chap. 2.
  21. Z. L. Xu, Elasticity (Higher Education, 2006), Chap. 6 (in Chinese).
  22. O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystals gravity sag on third harmonic generation,” Proc. SPIE 3492, 802–808 (1999). [CrossRef]
  23. R. W. Boyd, Nonlinear Optics (Academic, 2008), Chap. 2.
  24. S. Seidel and G. Mann, “Numerical modeling of thermal effects in nonlinear crystal for high average power second harmonic generation,” Proc. SPIE 2989, 204–214 (1997). [CrossRef]
  25. S. X. Shi, G. F. Chen, W. Zhao, and J. F. Liu, Nonlinear Optics (Xidian University, 2012), Chap. 4 (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited