OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 23 — Aug. 10, 2014
  • pp: 5141–5146

Orthogonally polarized dual-wavelength Nd:YAlO3 laser at 1341 and 1339  nm and sum-frequency mixing for an emission at 670  nm

Yanfei Lü, Jing Xia, Jing Zhang, Xihong Fu, and Huilong Liu  »View Author Affiliations


Applied Optics, Vol. 53, Issue 23, pp. 5141-5146 (2014)
http://dx.doi.org/10.1364/AO.53.005141


View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a diode-pumped continuous wave (cw) orthogonally polarized dual-wavelength laser at 1339 and 1341 nm with a single b-cut Nd:YAlO3 (Nd:YAP) crystal. By adjusting the tilt angle of the uncoated glass plate inserted in the laser cavity, we can control the cavity losses of two polarized directions. The output wavelengths are 1339 nm in a-axis polarization and 1341 nm in c-axis polarization, respectively, which are orthogonal to each other. At an incident pump power of 17.3 W, the cw output power obtained at 1339 and 1341 nm is 1.6 and 2.3 W, respectively. Furthermore, intracavity sum-frequency mixing at 1339 and 1341 nm was then realized in a KTiOPO4 (KTP) crystal to reach the red range. To our knowledge, this is the first work realizing an orthogonally polarized dual-wavelength Nd:YAP laser based on the F43/24I13/2 transition. Such a dual-wavelength laser would be especially valuable as a compact laser source to generate terahertz emission because the frequency difference between 1339 and 1341 nm is about 0.9 THz.

© 2014 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 28, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 13, 2014
Published: August 6, 2014

Citation
Yanfei Lü, Jing Xia, Jing Zhang, Xihong Fu, and Huilong Liu, "Orthogonally polarized dual-wavelength Nd:YAlO3 laser at 1341 and 1339  nm and sum-frequency mixing for an emission at 670  nm," Appl. Opt. 53, 5141-5146 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-23-5141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273, 226–230 (2007). [CrossRef]
  2. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010). [CrossRef]
  3. S. Zhang and D. Li, “Using beat frequency lasers to measure micro-displacement and gravity: a discussion,” Appl. Opt. 27, 20–21 (1988). [CrossRef]
  4. S. Zhang, M. Wu, and G. Jin, “Birefringent tuning double frequency He–Ne laser,” Appl. Opt. 29, 1265–1267 (1990). [CrossRef]
  5. J. Zhang, T. Feng, S. Zhang, and G. Jin, “Measurements of magnetic fields by a ring laser,” Appl. Opt. 31, 6459–6462 (1992). [CrossRef]
  6. Y. Ding, S. Zhang, Y. Li, J. Zhu, W. Du, and R. Suo, “Displacement sensors based on feedback effect of orthogonally polarized lights of frequency-split HeNe lasers,” Opt. Eng. 42, 2225–2228 (2003). [CrossRef]
  7. H. Y. Shen, T. Q. Lian, R. R. Zeng, Y. P. Zhou, and G. F. Yu, “Measurement of the stimulated emission cross section for the 4F3/2-4I13/2 transition of Nd3+ in YAlO3 crystal,” IEEE J. Quantum Electron. 25, 144–146 (1989). [CrossRef]
  8. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode, “Appl. Phys. Lett. 17, 213–215 (1970). [CrossRef]
  9. Y. F. Lü, P. Zhai, J. Xia, X. H. Fu, and S. T. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5  nm and 1064.5  nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B 29, 2352–2356 (2012). [CrossRef]
  10. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065  nm,” Opt. Express 17, 6004–6009 (2009). [CrossRef]
  11. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086  nm and 1089  nm,” Opt. Express 20, 5644–5651 (2012). [CrossRef]
  12. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  13. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005). [CrossRef]
  14. J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83, 4342–4368 (2011). [CrossRef]
  15. C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55, 4825–4838 (2010). [CrossRef]
  16. M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42, 4996–5005 (1971). [CrossRef]
  17. G. A. Massey and J. M. Yarborough, “High average power operation and nonlinear optical generation with the Nd:YAlO3 laser,” Appl. Phys. Lett. 18, 576–579 (1971). [CrossRef]
  18. H. Zhu, C. Huang, G. Zhang, Y. Wei, L. Huang, J. Chen, and Z. Chen, “High-power CW diode-side-pumped 1341  nm Nd:YAP laser,” Opt. Commun. 270, 296–300 (2007). [CrossRef]
  19. Y. Wei, G. Zhang, C. H. Huang, H. Y. Zhu, L. X. Huang, X. J. Ou-Yang, and G. F. Wang, “A single wavelength 1339  nm Nd: YAP pulsed laser,” Opt. Commun. 282, 4397–4400 (2009). [CrossRef]
  20. A. Li, H. Zhu, G. Zhang, C. Huang, Y. Wei, L. Huang, and Z. Chen, “Diode side-pumped 1.3414  μm Nd:YAP laser in Q-switched mode,” Appl. Opt. 46, 8002–8006 (2007). [CrossRef]
  21. A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991). [CrossRef]
  22. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20, 622–634 (2010). [CrossRef]
  23. E. Herault, F. Balembois, and P. Georges, “491  nm generation by sum-frequency mixing of diode pumped neodymium lasers,” Opt. Express 13, 5653–5661 (2005). [CrossRef]
  24. N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06  μm in Nd-doped laser crystals,” Laser Phys. 20, 215–221 (2010). [CrossRef]
  25. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991). [CrossRef]
  26. Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70, 475–478 (2000). [CrossRef]
  27. Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262, 241–245 (2006). [CrossRef]
  28. Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, and Y. C. Huang, “Single-longitudinal-mode, tunable dual wavelength, CW Nd:YVO4 laser,” Opt. Express 14, 5329–5334 (2006). [CrossRef]
  29. R. Zhou, E. B. Li, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Simultaneous dual-wavelength CW operation using 4F3/2-4I13/2 transitions in Nd:YVO4 crystal,” Opt. Commun. 260, 641–644 (2006). [CrossRef]
  30. J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79, 301–304 (2004). [CrossRef]
  31. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2-4I11/2 and 4F3/2-4I13/2,” Appl. Phys. Lett. 56, 1937–1938 (1990). [CrossRef]
  32. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988). [CrossRef]
  33. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86, 65–70 (2007). [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  35. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7  nm and 5.1 W/669.6  nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91, 433–436 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited