OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 23 — Aug. 10, 2014
  • pp: 5179–5186

Multimode interference devices with single-mode–multimode–multimode fiber structure

Nitin Bhatia and Joseph John  »View Author Affiliations

Applied Optics, Vol. 53, Issue 23, pp. 5179-5186 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a single-mode–multimode–multimode (SMm) fiber structure with a few interesting device applications. Unlike the single-mode–multimode–single-mode (SMS) structure, SMm has the unique feature of more than one mode in the output fiber. A detailed physical understanding of the transmission properties, and the differences from the SMS structure, is presented. The device can be used to excite selected modes in the output multimode fiber (MMF). This can be used to reduce the number of modes in high-speed MMF applications using an all-fiber structure instead of bulk optics. In yet another possible application, we show a way of designing sensitive refractive index sensors for measurement in different RI ranges.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 22, 2014
Manuscript Accepted: July 6, 2014
Published: August 6, 2014

Nitin Bhatia and Joseph John, "Multimode interference devices with single-mode–multimode–multimode fiber structure," Appl. Opt. 53, 5179-5186 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003). [CrossRef]
  2. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006). [CrossRef]
  3. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006). [CrossRef]
  4. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006). [CrossRef]
  5. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. LiKamWa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35, 324–326 (2010). [CrossRef]
  6. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004). [CrossRef]
  7. Y. O. Yilmaz, A. Mehta, W. S. Mohammed, and E. G. Johnson, “Fiber-optic beam shaper based on multimode interference,” Opt. Lett. 32, 3170–3172 (2007). [CrossRef]
  8. H. Talbot, “Facts relating to optical science,” Philos. Mag. J. Sci. 9, 401–407 (1836).
  9. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  10. D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17, 1856–1868 (1999). [CrossRef]
  11. J. Villatoro and D. Monz-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24, 1409–1413 (2006). [CrossRef]
  12. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006). [CrossRef]
  13. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single mode-multimode-single mode and single mode-tapered multimode-single mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011). [CrossRef]
  14. C. R. Biazoli, S. Silva, M. A. R. Franco, O. Frazo, and C. M. B. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Appl. Opt. 51, 5941–5945 (2012). [CrossRef]
  15. Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11, 1125–1131 (1993). [CrossRef]
  16. R. E. Freund, C.-A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol. 28, 569–586 (2010). [CrossRef]
  17. S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002). [CrossRef]
  18. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol. 29, 1980–1987 (2011). [CrossRef]
  19. J. Villatoro, D. Monzon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004). [CrossRef]
  20. Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode multimode singlemode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008). [CrossRef]
  21. O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49, 167–191 (2006). [CrossRef]
  22. G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426–1428 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited