OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 23 — Aug. 10, 2014
  • pp: 5252–5258

Infrared liquid crystal polymer micropolarizer

Wei-Liang Hsu, Kaushik Balakrishnan, Mohammed Ibn-Elhaj, and Stanley Pau  »View Author Affiliations

Applied Optics, Vol. 53, Issue 23, pp. 5252-5258 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (703 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to create arbitrary patterned linear and circular infrared (IR) liquid crystal polymer (LCP) polarizers is demonstrated. The operating wavelength of the thin-film polarizer ranges from 700 to 4200 nm. The linear micropolarizer is fabricated using IR dichroic dye as a guest in LCP host with feature size as small as 4 μm. The circular micropolarizer is fabricated using cholesteric LCPs with feature size as small as 6.2 μm.

© 2014 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(260.5430) Physical optics : Polarization
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:

Original Manuscript: June 13, 2014
Manuscript Accepted: July 14, 2014
Published: August 8, 2014

Wei-Liang Hsu, Kaushik Balakrishnan, Mohammed Ibn-Elhaj, and Stanley Pau, "Infrared liquid crystal polymer micropolarizer," Appl. Opt. 53, 5252-5258 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Mudge and M. Virgen, “Real time polarimetric dehazing,” Appl. Opt. 52, 1932–1938 (2013). [CrossRef]
  2. S. Klein, “Electrophoretic liquid crystal displays: how far are we?” Liq. Cryst. Rev. 1, 52–64 (2013). [CrossRef]
  3. A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013). [CrossRef]
  4. J. Soni, H. Purwar, H. Lakhotia, S. Chandel, C. Banerjee, U. Kumar, and N. Ghosh, “Quantitative fluorescence and elastic scattering tissue polarimetry using an eigenvalue calibrated spectroscopic Mueller matrix system,” Opt. Express 21, 15475–15489 (2013). [CrossRef]
  5. J. Wyant, “Computerized interferometric surface measurements [Invited],” Appl. Opt. 52, 1–8 (2013). [CrossRef]
  6. J. M. Bennett, “Polarizers,” in Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap. 3.
  7. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).
  8. G. Myhre, A. Sayyad, and S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18, 27777–27786 (2010). [CrossRef]
  9. N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005). [CrossRef]
  10. V. Gruev, A. Ortu, N. Lazarus, J. Van de Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007). [CrossRef]
  11. Y. L. Zhou and D. J. Klotzkin, “Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55  μm,” Appl. Opt. 47, 3555–3560 (2008). [CrossRef]
  12. A. Stalmashonak, G. Seifert, A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48, F37–F43 (2009). [CrossRef]
  13. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-Stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012). [CrossRef]
  14. C. T. Lee, H. Y. Lin, and C. H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18, 27079–27094 (2010). [CrossRef]
  15. O. Graydon, “Polarization: making vortices of light,” Nat. Photonics 5, 331 (2011). [CrossRef]
  16. P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97, 241109 (2010). [CrossRef]
  17. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000). [CrossRef]
  18. G. Nordin, J. Meier, P. Deguzman, and M. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999). [CrossRef]
  19. T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.
  20. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996). [CrossRef]
  21. D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013). [CrossRef]
  22. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  23. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  24. J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011). [CrossRef]
  25. J. Ma and L. Xuan, “Toward nanoscale molecular switch-based liquid crystal displays,” Displays 34, 293–300 (2013). [CrossRef]
  26. S. Y. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  27. B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005). [CrossRef]
  28. G. Myhre and S. Pau, “Imaging capability of patterned liquid crystals,” Appl. Opt. 48, 6152–6158 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited