OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 24 — Aug. 20, 2014
  • pp: 5391–5397

Optical bistability and multistability via magnetic field intensities in a solid

Hamid Reza Hamedi  »View Author Affiliations


Applied Optics, Vol. 53, Issue 24, pp. 5391-5397 (2014)
http://dx.doi.org/10.1364/AO.53.005391


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical bistability (OB) and optical multistability (OM) behavior in molecular magnets is theoretically studied. It is demonstrated that the OB of the system can be controlled via adjusting the magnetic field intensity. In addition, it is shown that the frequency detuning of probe and coupling fields, as well as the cooperation parameter, has remarkable effects on the OB behavior of the system. Also, we find that OB can be converted to OM through the magnitude of control-field detuning. Our results can be used as a guideline for optimizing and controlling the switching process in the crystal of molecular magnets.

© 2014 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.1450) Nonlinear optics : Bistability
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 24, 2014
Revised Manuscript: June 11, 2014
Manuscript Accepted: July 10, 2014
Published: August 14, 2014

Citation
Hamid Reza Hamedi, "Optical bistability and multistability via magnetic field intensities in a solid," Appl. Opt. 53, 5391-5397 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-24-5391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005). [CrossRef]
  2. S. H. Asadpour, H. R. Hamedi, and M. Sahrai, “Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system,” J. Lumin. 132, 2188–2193 (2012). [CrossRef]
  3. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064–2066 (2004). [CrossRef]
  4. J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006). [CrossRef]
  5. J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Phys. D 228, 148–152 (2007). [CrossRef]
  6. J. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007). [CrossRef]
  7. J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008). [CrossRef]
  8. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004). [CrossRef]
  9. Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005). [CrossRef]
  10. W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996). [CrossRef]
  11. Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009). [CrossRef]
  12. M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002). [CrossRef]
  13. H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013). [CrossRef]
  14. H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013). [CrossRef]
  15. J.-H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007). [CrossRef]
  16. Z. Wang, “Optical bistability and multistability via quantum interference in an Er3+-doped optical fiber,” J. Lumin. 131, 2404–2408 (2011). [CrossRef]
  17. H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014). [CrossRef]
  18. Z.-H. Xiao and K. Kim, “Optical bistability using quantum coherence in a microwave-driven four-level atomic system,” Opt. Commun. 283, 2178–2181 (2010). [CrossRef]
  19. G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000). [CrossRef]
  20. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993). [CrossRef]
  21. E. M. Chudnovsky, “Crystal field −ASz2 does not produce one-phonon transitions with Delta Sz = ±2 (Comment on ‘Spin relaxation in Mn12-acetate’ by M. N. Leuenberger and D. Loss),” Europhys. Lett. 52, 245–246 (2000). [CrossRef]
  22. E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004). [CrossRef]
  23. I. D. Tokman and G. A. Vugalter, “Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field,” Phys. Rev. A 66, 013407 (2002). [CrossRef]
  24. I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003). [CrossRef]
  25. I. D. Tokman, G. A. Vugalter, and A. I. Grebeneva, “Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field,” Phys. Rev. B 71, 094431 (2005). [CrossRef]
  26. A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006). [CrossRef]
  27. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007). [CrossRef]
  28. Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007). [CrossRef]
  29. G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000). [CrossRef]
  30. S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007). [CrossRef]
  31. A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007). [CrossRef]
  32. M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789–793 (2001). [CrossRef]
  33. F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005). [CrossRef]
  34. J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007). [CrossRef]
  35. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996). [CrossRef]
  36. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996). [CrossRef]
  37. W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133–135 (1999). [CrossRef]
  38. S. Feili and H. R. Hamedi, “Large Kerr nonlinearity in a crystal of molecular magnets system,” Opt. Commun. 315, 116–121 (2014). [CrossRef]
  39. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007). [CrossRef]
  40. A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996). [CrossRef]
  41. A.-L. Barra, D. Gatteschi, and R. Sessoli, “High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization,” Phys. Rev. B 56, 8192–8198 (1997). [CrossRef]
  42. R. Bonifacio and L. A. Lugiato, “Instabilities for a coherently driven absorber in a ring cavity,” Lett. Nuovo Cimento 21, 505–509 (1978). [CrossRef]
  43. R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited