OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 25 — Sep. 1, 2014
  • pp: 5660–5671

Brillouin scattering properties of lanthano–aluminosilicate optical fiber

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster  »View Author Affiliations


Applied Optics, Vol. 53, Issue 25, pp. 5660-5671 (2014)
http://dx.doi.org/10.1364/AO.53.005660


View Full Text Article

Enhanced HTML    Acrobat PDF (832 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Utilizing measurements on a lanthano–aluminosilicate core optical fiber, the specific effects of lanthana (La2O3) on the Brillouin characteristics of silica-based oxide glass optical fibers are described. Lanthana is an interesting species to investigate since it possesses a wide transparency window covering the common fiber laser and telecom system wavelengths. As might be expected, it is found that the properties of lanthana are very similar to those of ytterbia (Yb2O3), namely, low acoustic velocity, wide Brillouin spectral width, and a negative photoelastic constant, with the latter two properties affording significant reductions to the Brillouin gain coefficient. However, lanthana possesses thermo-acoustic and strain-acoustic coefficients (acoustic velocity versus temperature or strain, TAC and SAC, respectively) with signs that are opposed to those of ytterbia. The lanthano–aluminosilicate (SAL) fiber utilized in this study is Brillouin-athermal (no dependence of the Brillouin frequency on temperature), but not atensic (is dependent upon the strain), which is believed to be, to the best of our knowledge, the first demonstration of such a glass fiber utilizing a compositional engineering approach.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 30, 2014
Manuscript Accepted: July 6, 2014
Published: August 25, 2014

Virtual Issues
October 8, 2014 Spotlight on Optics

Citation
P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster, "Brillouin scattering properties of lanthano–aluminosilicate optical fiber," Appl. Opt. 53, 5660-5671 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-25-5660


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering-based fiber sensors,” Sensors 11, 4152–4187 (2011). [CrossRef]
  2. C. A. Galindex-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 12, 204121 (2012).
  3. R. G. Smith, “Optical power handling capacity of low-loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef]
  4. D. Richardson, J. Nilsson, and A. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  5. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31, 668–669 (1995). [CrossRef]
  6. M. Ohashi and M. Tateda, “Design of strain-free-fiber with non-uniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993). [CrossRef]
  7. J. Hansryd, F. Dross, M. Westlund, P. Andrekson, and S. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001). [CrossRef]
  8. N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991). [CrossRef]
  9. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO/QELS), technical digest (2005), pp. 1984–1986.
  10. M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.
  11. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005). [CrossRef]
  12. P. D. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.
  13. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007). [CrossRef]
  14. P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009). [CrossRef]
  15. S. Morris and J. Ballato, “Molten core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).
  16. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012). [CrossRef]
  17. P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21, 10924–10941 (2013). [CrossRef]
  18. J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013). [CrossRef]
  19. J. Ballato and P. Dragic, “Materials development for next-generation optical fiber,” Materials 7, 4411–4430 (2014).
  20. P. Dragic and J. Ballato, “120 years of optical glass science: from the law of mixtures to mixing the unmixable,” Opt. Photon. News 25(5), 44–51 (2014). [CrossRef]
  21. P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013). [CrossRef]
  22. D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).
  23. A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier-transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010). [CrossRef]
  24. M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002). [CrossRef]
  25. S.-C. Cheng and M. J. Dejneka, “TEM investigation of the core/cladding interface of La2O3-Al2O3-SiO2 glasses for high-power fiber lasers,” Mater. Res. Soc. Symp. Proc. 751, 49–54 (2003).
  26. P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011). [CrossRef]
  27. P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
  28. R. W. Boyd, K. Rzažewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990). [CrossRef]
  29. G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  30. P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B 30, 244–250 (2013). [CrossRef]
  31. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012). [CrossRef]
  32. J. F. Shackelford and W. Alexander, eds. “Selecting Thermal Properties,” in CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, 2010), p. 1540.
  33. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20, 15710–15722 (2012). [CrossRef]
  34. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012). [CrossRef]
  35. D. B. Keck, “Observation of externally controlled mode coupling in optical waveguides,” Proc. IEEE 62, 649–650 (1974). [CrossRef]
  36. A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988). [CrossRef]
  37. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993). [CrossRef]
  38. P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22, 1698–1700 (2010). [CrossRef]
  39. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  40. L. Peselnick, R. Meister, and W. H. Wilson, “Pressure derivatives of elastic moduli of fused quartz to 10  kb,” J. Phys. Chem. Solids 28, 635–639 (1967). [CrossRef]
  41. D. Gerlich and G. C. Kennedy, “Second pressure derivatives of the elastic moduli of fused quartz,” J. Phys. Chem. Solids 39, 1189–1191 (1978). [CrossRef]
  42. D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992). [CrossRef]
  43. S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005). [CrossRef]
  44. R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80, 1919–1928 (1997). [CrossRef]
  45. K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013). [CrossRef]
  46. P. D. Dragic, S. W. Martin, and J. Ballato, are preparing a manuscript to be called “On the anomalous dependence of the acoustic velocity of alumina on temperature in aluminosilicate fibers.”
  47. V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited