OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 26 — Sep. 10, 2014
  • pp: 5860–5864

Spectrum sensing of trace C2H2 detection in differential optical absorption spectroscopy technique

Xi Chen and Xiaopeng Dong  »View Author Affiliations


Applied Optics, Vol. 53, Issue 26, pp. 5860-5864 (2014)
http://dx.doi.org/10.1364/AO.53.005860


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved algorithm for trace C2H2 detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

© 2014 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: May 6, 2014
Revised Manuscript: July 25, 2014
Manuscript Accepted: July 31, 2014
Published: September 3, 2014

Citation
Xi Chen and Xiaopeng Dong, "Spectrum sensing of trace C2H2 detection in differential optical absorption spectroscopy technique," Appl. Opt. 53, 5860-5864 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-26-5860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Babin, R. Forest, B. Bourliaguet, D. Cantin, P. Cottin, O. Pancrati, S. Turbide, S. Lambert-Girard, F. Cayer, and D. Lemieux, “Latest developments in active remote sensing at INO,” Proc. SPIE 8515, 85150E (2012). [CrossRef]
  2. A. Merten, J. Tschritter, and U. Platt, “Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics,” Appl. Opt. 50, 738–754 (2011). [CrossRef]
  3. E. Simeone and A. Donati, “Signal optimization, noise reduction, and systematic error compensation methods in long-path DOAS measurements,” Proc. SPIE 3493, 139–147 (1998). [CrossRef]
  4. J. Stutz and U. Platt, “Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041–6053 (1996). [CrossRef]
  5. R. Volkamer, S. Coburn, B. Dix, and R. Sinreich, “MAX-DOAS observations from ground, ship, and research aircraft: maximizing signal-to-noise to measure ‘weak’ absorbers,” Proc. SPIE 7462, 746203 (2009). [CrossRef]
  6. F. A. Videla, D. C. Schinca, and J. O. Tocho, “Alternative method for concentration retrieval in differential optical absorption spectroscopy atmospheric-gas pollutant measurements,” Appl. Opt. 42, 3653–3661 (2003). [CrossRef]
  7. M. Wenig, B. Jähne, and U. Platt, “Operator representation as a new differential optical absorption spectroscopy formalism,” Appl. Opt. 44, 3246–3253 (2005). [CrossRef]
  8. L. Guanter, R. Richter, and J. Moreno, “Spectral calibration of hyperspectral imagery using atmospheric absorption features,” Appl. Opt. 45, 2360–2370 (2006). [CrossRef]
  9. Y. Sulub and G. W. Small, “Spectral simulation methodology for calibration transfer of near-infrared spectra,” Appl. Spectrosc. 61, 406–413 (2007). [CrossRef]
  10. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
  11. D. M. Martínez and Á. G. Andrade, “Performance evaluation of Welch’s periodogram-based energy detection for spectrum sensing,” IET Commun. 7, 1117–1125 (2013).
  12. Q. H. Wen, A. Wong, and X. L. Wang, “Overlapped grouping periodogram test for detecting multiple hidden periodicities in mixed spectra,” J. Time Ser. Anal. 33, 255–268 (2012). [CrossRef]
  13. E. H. Gismalla and E. Alsusa, “Performance analysis of the periodogram-based energy detector in fading channels,” IEEE Trans. Signal Process. 59, 3712–3721 (2011). [CrossRef]
  14. D. Zheng and T. Zhang, “Research on vortex signal processing based on double-window relaxing notch periodogram,” Flow Meas. Instrum. 19, 85–91 (2008). [CrossRef]
  15. X. Qu and Y. Li, “Study on removing the lamp spectrum structure in differential optical absorption spectroscopy,” Spectrosc. Spect. Anal. 30, 2897–2901 (2010).
  16. C. Tétard, D. Fussen, F. Vanhellemont, C. Bingen, E. Dekemper, N. Mateshvili, D. Pieroux, C. Robert, E. Kyrölä, and J. Tamminen, “OClO slant column densities derived from GOMOS averaged transmittance measurements,” Atmos. Meas. Tech. 6, 2953–2964 (2013). [CrossRef]
  17. L. SuWen, L. WenQing, X. PinHua, and Z. YuJun, “Application of Kalman filtering and wavelet transform in DOAS,” in IEEE International Conference on Information Acquisition (2006), pp. 748–753.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited