OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 27 — Sep. 20, 2014
  • pp: G111–G122

Biomedical applications of holographic microspectroscopy [Invited]

JaeHwang Jung, Kyoohyun Kim, HyeonSeung Yu, KyeoReh Lee, SeoEun Lee, SeungHoon Nahm, HyunJoo Park, and YongKeun Park  »View Author Affiliations

Applied Optics, Vol. 53, Issue 27, pp. G111-G122 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (878 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The identification and quantification of specific molecules are crucial for studying the pathophysiology of cells, tissues, and organs as well as diagnosis and treatment of diseases. Recent advances in holographic microspectroscopy, based on quantitative phase imaging or optical coherence tomography techniques, show promise for label-free noninvasive optical detection and quantification of specific molecules in living cells and tissues (e.g., hemoglobin protein). To provide important insight into the potential employment of holographic spectroscopy techniques in biological research and for related practical applications, we review the principles of holographic microspectroscopy techniques and highlight recent studies.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.3170) Microscopy : Interference microscopy
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: April 30, 2014
Revised Manuscript: June 23, 2014
Manuscript Accepted: June 24, 2014
Published: August 1, 2014

Virtual Issues
Vol. 9, Iss. 11 Virtual Journal for Biomedical Optics

JaeHwang Jung, Kyoohyun Kim, HyeonSeung Yu, KyeoReh Lee, SeoEun Lee, SeungHoon Nahm, HyunJoo Park, and YongKeun Park, "Biomedical applications of holographic microspectroscopy [Invited]," Appl. Opt. 53, G111-G122 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006). [CrossRef]
  2. B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006). [CrossRef]
  3. M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
  4. M. Fritzsche and C.-F. Mandenius, “Fluorescent cell-based sensing approaches for toxicity testing,” Anal. Bioanal. Chem. 398, 181–191 (2010). [CrossRef]
  5. E. G. Gerrits, A. J. Smit, and H. J. Bilo, “AGEs, autofluorescence and renal function,” Nephrol. Dial. Transplant. 24, 710–713 (2009).
  6. G. J. Thomas, “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28, 1–27 (1999). [CrossRef]
  7. C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst 134, 1046–1057 (2009). [CrossRef]
  8. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Elsevier, 1990).
  9. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  10. K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013). [CrossRef]
  11. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003). [CrossRef]
  12. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  13. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000). [CrossRef]
  14. C. Yang, M. A. Choma, L. E. Lamb, J. D. Simon, and J. A. Izatt, “Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent,” Opt. Lett. 29, 1396–1398 (2004). [CrossRef]
  15. D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015–1017 (2005). [CrossRef]
  16. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008). [CrossRef]
  17. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010). [CrossRef]
  18. J. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. (2013).
  19. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34, 3668–3670 (2009). [CrossRef]
  20. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5, 744–747 (2011). [CrossRef]
  21. V. Lucarini, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).
  22. G. Milton, D. Eyre, and J. Mantese, “Finite frequency range Kramers–Kronig relations: bounds on the dispersion,” Phys. Rev. Lett. 79, 3062–3065 (1997). [CrossRef]
  23. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skin-like phantoms,” Proc. SPIE 4162, 219–226 (2000). [CrossRef]
  24. N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, “Measuring the refractometric characteristics of optical plastics,” Opt. Quantum Electron. 35, 21–34 (2003). [CrossRef]
  25. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481–1490 (2007). [CrossRef]
  26. M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100  nm dependent on concentration,” Appl. Opt. 45, 2838–2842 (2006). [CrossRef]
  27. S.-T. Wu, C. Wu, M. Warenghem, and M. Ismaili, “Refractive index dispersions of liquid crystals,” Opt. Eng. 32, 1775–1780 (1993). [CrossRef]
  28. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997). [CrossRef]
  29. H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Phys. B 279, 295–301 (2000). [CrossRef]
  30. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600  nm,” Phys. Med. Biol. 51, 1479–1489 (2006). [CrossRef]
  31. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef]
  32. J. J. Nordlund, R. E. Boissy, V. J. Hearing, R. A. King, and J. Ortonne, The Pigmentary System (Oxford University, 1998).
  33. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” Oregon Medical Laser Center, 1998, http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  34. R. L. van Veen, H. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” in Biomedical Topical Meeting, OSA Technical Meeting (Optical Society of America, 2004), paper SF4.
  35. J. Koziol, “Studies of flavins in organic solvents—I. spectral characteristics of riboflavin, riboflavin tetrabutyrate and lumichrome,” Photochem. Photobiol. 5, 41–54 (1966). [CrossRef]
  36. D. L. Sackett and J. Wolff, “Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces,” Anal. Biochem. 167, 228–234 (1987). [CrossRef]
  37. H. Abe, K. Ikebuchi, S. Wagner, M. Kuwabara, N. Kamo, and S. Sekiguchi, “Potential involvement of both type I and type II mechanisms in M13 virus inactivation by methylene blue photosensitization,” Photochem. Photobiol. 66, 204–208 (1997). [CrossRef]
  38. B. Del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Marti, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998). [CrossRef]
  39. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  40. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007). [CrossRef]
  41. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Opt. Lett. 32, 3522–3524 (2007). [CrossRef]
  42. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15, 020506 (2010). [CrossRef]
  43. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15, 010505 (2010). [CrossRef]
  44. Z. Yaqoob, T. Yamauchi, W. Choi, D. Fu, R. R. Dasari, and M. S. Feld, “Single-shot full-field reflection phase microscopy,” Opt. Express 19, 7587–7595 (2011). [CrossRef]
  45. R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173, 821–822 (1954). [CrossRef]
  46. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610  nm,” Phys. Med. Biol. 48, 4165 (2003). [CrossRef]
  47. E. D. Palik, Handbook of Optical Constants of Solids: Index (Elsevier, 1998), Vol. 3.
  48. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  49. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999). [CrossRef]
  50. J. Hagen, Enhanced Luminous Efficiency and Brightness using DNA Electron Blocking Layers in Bio-Organic Light Emitting Diodes (University of Cincinnati, 2006).
  51. T. Inagaki, R. Hamm, E. Arakawa, and L. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974). [CrossRef]
  52. S. Jacques, “Optical absorption spectrum of carbonized tissue,” Oregon Medical Laser Center, 1998, http://omlc.ogi.edu/spectra/carbonizedtissue/index.html .
  53. J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982). [CrossRef]
  54. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011), Vol. 162.
  55. W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001). [CrossRef]
  56. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004). [CrossRef]
  57. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne Mach–Zehnder phase microscopy,” Opt. Lett. 32, 1572–1574 (2007). [CrossRef]
  58. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef]
  59. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006). [CrossRef]
  60. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006). [CrossRef]
  61. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009). [CrossRef]
  62. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36, 4677–4679 (2011). [CrossRef]
  63. A. Barty, K. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  64. S. S. Kou, L. Waller, G. Barbastathis, and C. J. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett. 35, 447–449 (2010). [CrossRef]
  65. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009). [CrossRef]
  66. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002). [CrossRef]
  67. F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006). [CrossRef]
  68. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008). [CrossRef]
  69. K. Kim, H.-O. Yoon, M. Diez-Silva, M. Dao, R. Dasari, and Y.-K. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014). [CrossRef]
  70. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008). [CrossRef]
  71. Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
  72. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  73. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef]
  74. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  75. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25, 1526–1528 (2000). [CrossRef]
  76. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26, 686–688 (2001). [CrossRef]
  77. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36, 4665–4667 (2011). [CrossRef]
  78. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012). [CrossRef]
  79. H. Pham, B. Bhaduri, H. F. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37, 3438–3440 (2012). [CrossRef]
  80. C. Wang, J. Kim, C. T. Jin, P. H. Leong, and A. McEwan, “Review: near infrared spectroscopy in optical coherence tomography,” J. Near Infrared Spectrosc. 20, 237–247 (2012). [CrossRef]
  81. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003). [CrossRef]
  82. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006). [CrossRef]
  83. A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008). [CrossRef]
  84. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010). [CrossRef]
  85. M. Mir, K. Tangella, and G. Popescu, “Blood testing at the single cell level using quantitative phase and amplitude microscopy,” Biomed. Opt. Express 2, 3259–3266 (2011). [CrossRef]
  86. A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44, 1188–1190 (2005). [CrossRef]
  87. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851 (2010). [CrossRef]
  88. D. Singh Mehta and V. Srivastava, “Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis,” Appl. Phys. Lett. 101, 203701 (2012). [CrossRef]
  89. M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3, 958–965 (2012). [CrossRef]
  90. G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16 (2008). [CrossRef]
  91. Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. USA 107, 6731–6736 (2010). [CrossRef]
  92. E. Ben-Isaac, Y. K. Park, G. Popescu, F. L. H. Brown, N. S. Gov, and Y. Shokef, “Effective temperature of red-blood-cell membrane fluctuations,” Phys. Rev. Lett. 106, 238103 (2011). [CrossRef]
  93. Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E 83, 051925 (2011).
  94. Y. K. Park, C. A. Best, and G. Popescu, “Optical sensing of red blood cell dynamics,” in Mechanobiology of Cell-Cell and Cell-Matrix Interactions (Springer, 2011), pp. 279–309.
  95. Y. Kim, K. Kim, and Y. Park, “Measurement techniques for red blood cell deformability: recent advances,” in Blood Cell—An Overview of Studies in Hematology, T. E. Moschandreou, ed. (INTECH, 2012), pp. 167–194.
  96. G. Popescu, Y. K. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E 76, 31902 (2007). [CrossRef]
  97. S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. K. Park, R. R. Dassari, and M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103, 11–18 (2012). [CrossRef]
  98. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000). [CrossRef]
  99. D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487–5501 (2004). [CrossRef]
  100. C. Y. Xu, P. S. Carney, and S. A. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13, 5450–5462 (2005). [CrossRef]
  101. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Molecular contrast in optical coherence tomography by use of a pump probe technique,” Opt. Lett. 28, 340–342 (2003). [CrossRef]
  102. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647–1649 (2004). [CrossRef]
  103. C. Yang, L. E. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent,” Opt. Lett. 29, 2016–2018 (2004). [CrossRef]
  104. R. N. Graf and A. Wax, “Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography,” J. Opt. Soc. Am. A 24, 2186–2195 (2007). [CrossRef]
  105. C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31, 1079–1081 (2006). [CrossRef]
  106. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000). [CrossRef]
  107. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1, 310–317 (2010). [CrossRef]
  108. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013). [CrossRef]
  109. S. Kray, F. Spöler, M. Först, and H. Kurz, “High resolution simultaneous dual-band spectral domain optical coherence tomography,” in Optical Coherence Tomography and Coherence Techniques IV, P. Anderson and B. Bouma, eds., Vol. 7372 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), paper 7372_1H.
  110. H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005). [CrossRef]
  111. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19, 6407–6411 (2009). [CrossRef]
  112. Y. L. Li, K. Seekell, H. K. Yuan, F. E. Robles, and A. Wax, “Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography,” Biomed. Opt. Express 3, 1914–1923 (2012). [CrossRef]
  113. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003). [CrossRef]
  114. A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1629–1640 (2007). [CrossRef]
  115. M. Diez-Silva, Y. Park, S. Huang, O. Mercereau-Puijalon, G. Deplaine, C. Lavazec, S. Perrot, S. Bonnefoy, M. Dao, M. S. Feld, J. Han, and S. Suresh, “Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells,” Sci. Rep. 2, 614 (2012).
  116. H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8, 4130–4138 (2012).
  117. S. Cho, S. Kim, Y. Kim, and Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30, 71–79 (2012). [CrossRef]
  118. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011). [CrossRef]
  119. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. Dasari, M. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008). [CrossRef]
  120. W. T. Gerthoffer, “Mechanisms of vascular smooth muscle cell migration,” Circ. Res. 100, 607–621 (2007). [CrossRef]
  121. J. Garay, J. A. D’Angelo, Y. K. Park, C. M. Summa, M. L. Aiken, E. Morales, K. Badizadegan, E. Fiebiger, and B. L. Dickinson, “Crosstalk between PKA and Epac regulates the phenotypic maturation and function of human dendritic cells,” J. Immunol. 185, 3227–3238 (2010). [CrossRef]
  122. P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31, 11846–11854 (2011). [CrossRef]
  123. T. A. Zangle, J. Chun, J. Zhang, J. Reed, and M. A. Teitell, “Quantification of biomass and cell motion in human pluripotent stem cell colonies,” Biophys. J. 105, 593–601 (2013). [CrossRef]
  124. J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, and C. Depeursinge, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11, 101–107 (2013).
  125. Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012). [CrossRef]
  126. T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014). [CrossRef]
  127. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
  128. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101, 238102 (2008). [CrossRef]
  129. M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A 8, S518–S523 (2006). [CrossRef]
  130. Y. K. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett. 32, 811–813 (2007). [CrossRef]
  131. K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013). [CrossRef]
  132. R. Chandramohanadas, Y. Park, L. Lui, A. Li, D. Quinn, K. Liew, M. Diez-Silva, Y. Sung, M. Dao, C. T. Lim, P. R. Preiser, and S. Suresh, “Biophysics of malarial parasite exit from infected erythrocytes,” PLoS One 6, e20869 (2011). [CrossRef]
  133. D. Huafeng, E. Berl, W. Zhuo, L. J. Millet, M. U. Gillette, L. Jianming, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16, 909–918 (2010). [CrossRef]
  134. Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16, 011013 (2011). [CrossRef]
  135. H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37, 2577–2579 (2012). [CrossRef]
  136. K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37, 4161–4163 (2012). [CrossRef]
  137. D. Fu, W. Choi, Y. Sung, S. Oh, Z. Yaqoob, Y. Park, R. R. Dasari, and M. S. Feld, “Ultraviolet refractometry using field-based light scattering spectroscopy,” Opt. Express 17, 18878 (2009). [CrossRef]
  138. J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22, 4108–4114 (2014). [CrossRef]
  139. S. Alexandrov, T. Hillman, T. Gutzler, and D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef]
  140. K. Lee, H.-D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21, 22453–22463 (2013). [CrossRef]
  141. Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009). [CrossRef]
  142. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012). [CrossRef]
  143. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546–1548 (2003). [CrossRef]
  144. N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt. 18, 111414 (2013). [CrossRef]
  145. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33, 1270–1272 (2008). [CrossRef]
  146. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
  147. J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011). [CrossRef]
  148. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012). [CrossRef]
  149. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef]
  150. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013). [CrossRef]
  151. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011). [CrossRef]
  152. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011). [CrossRef]
  153. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011). [CrossRef]
  154. J. H. Park, C. H. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012). [CrossRef]
  155. J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012). [CrossRef]
  156. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011). [CrossRef]
  157. T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013). [CrossRef]
  158. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012). [CrossRef]
  159. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. D. Lee, and Y. K. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013). [CrossRef]
  160. H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22, 7514–7523 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited