OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 27 — Sep. 20, 2014
  • pp: G44–G63

Recent advances in digital holography [Invited]

Wolfgang Osten, Ahmad Faridian, Peng Gao, Klaus Körner, Dinesh Naik, Giancarlo Pedrini, Alok Kumar Singh, Mitsuo Takeda, and Marc Wilke  »View Author Affiliations

Applied Optics, Vol. 53, Issue 27, pp. G44-G63 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3054 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This article presents an overview of recent advances in the field of digital holography, ranging from holographic techniques designed to increase the resolution of microscopic images, holographic imaging using incoherent illumination, phase retrieval with incoherent illumination, imaging of occluded objects, and the holographic recording of depth-extended objects using a frequency-comb laser, to the design of an infrastructure for remote laboratories for digital-holographic microscopy and metrology. The paper refers to current trends in digital holography and explains them using new results that were recently achieved at the Institute for Applied Optics of the University Stuttgart.

© 2014 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography
(150.3045) Machine vision : Industrial optical metrology

Original Manuscript: May 7, 2014
Manuscript Accepted: June 5, 2014
Published: July 30, 2014

Virtual Issues
Vol. 9, Iss. 11 Virtual Journal for Biomedical Optics

Wolfgang Osten, Ahmad Faridian, Peng Gao, Klaus Körner, Dinesh Naik, Giancarlo Pedrini, Alok Kumar Singh, Mitsuo Takeda, and Marc Wilke, "Recent advances in digital holography [Invited]," Appl. Opt. 53, G44-G63 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  2. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  3. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  5. T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971). [CrossRef]
  6. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  7. T. H. Demetrakopoulos and R. Mitra, “Digital and optical reconstruction of images from suboptical patterns,” Appl. Opt. 13, 665–670 (1974). [CrossRef]
  8. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
  9. X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014). [CrossRef]
  10. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006). [CrossRef]
  11. T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley-VCH, 2005).
  12. J. Gang, “Three-dimensional display technologies,” Adv. Opt. Photon. 5, 456–535 (2013). [CrossRef]
  13. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006). [CrossRef]
  14. H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, eds., Holographic Data Storage (Springer-Verlag, 2000).
  15. L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2004).
  16. M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000). [CrossRef]
  17. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45, 960–967 (2006). [CrossRef]
  18. HOLOEYE Photonic AG, http://holoeye.com/ .
  19. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–29.
  20. HAMAMTSU Photonics K.K., http://www.hamamatsu.com/jp/en/technology/innovation/lcos-slm/index.html .
  21. S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010). [CrossRef]
  22. M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).
  23. M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010). [CrossRef]
  24. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003). [CrossRef]
  25. J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004). [CrossRef]
  26. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011). [CrossRef]
  27. T. Haist, M. Hasler, W. Osten, and M. Baranek, “Programmable microscopy,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 153–174.
  28. P. Marquet and C. Depeursinge, “Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 197–212.
  29. L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011). [CrossRef]
  30. B. Lee and Y. Kim, “Three-dimensional display and imaging: status and prospects,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 31–56.
  31. W. Osten, T. Baumbach, and W. Jueptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002). [CrossRef]
  32. T. Baumbach, W. Osten, C. Kopylow, and W. Jueptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006). [CrossRef]
  33. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010). [CrossRef]
  34. P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013). [CrossRef]
  35. A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013). [CrossRef]
  36. A. Faridian, G. Pedrini, and W. Osten, “Opposed-view dark-field digital holographic microscopy,” Biomed. Opt. Express 5, 728–736 (2014). [CrossRef]
  37. G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a Mach-Zehnder setup,” Opt. Lett. 37, 713–715 (2012). [CrossRef]
  38. D. N. Naik, G. Pedrini, and W. Osten, “Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell,” Opt. Express 21, 3990–3995 (2013). [CrossRef]
  39. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014). [CrossRef]
  40. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014). [CrossRef]
  41. K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012). [CrossRef]
  42. K. Körner, G. Pedrini, C. Pruss, and W. Osten, “Verfahren und Anordnung zur Kurz-Kohärenz-Holografie,” Deutsches PatentDE 10 2011 016 660 B4 (October 25, 2012).
  43. K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012). [CrossRef]
  44. P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013). [CrossRef]
  45. A. Singh, A. Faridian, P. Gao, G. Pedrini, and W. Osten, “Quantitative phase imaging using deep UV LED source,” Opt. Lett. 39, 3468–3471 (2014). [CrossRef]
  46. W. Osten, M. Wilke, and G. Pedrini, “Remote laboratories for optical metrology: from the lab to the cloud,” Opt. Eng. 52, 101914 (2013). [CrossRef]
  47. M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012). [CrossRef]
  48. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  49. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000). [CrossRef]
  50. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005). [CrossRef]
  51. A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt. 49, 3434–3441 (2010). [CrossRef]
  52. L. Mertz and N. O. Young, “Fresnel transformations of images,” in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman and Hall, 1962), pp. 305–310.
  53. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555–1556 (1965). [CrossRef]
  54. O. Bryngdahl and A. Lohmann, “Variable magnification in incoherent holography,” Appl. Opt. 9, 231–232 (1970). [CrossRef]
  55. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007). [CrossRef]
  56. C. W. McCutchen, “Generalized source and the van Cittert-Zernike theorem: a study of the spatial coherence required for interferometry,” J. Opt. Soc. Am. 56, 727–732 (1966). [CrossRef]
  57. A. S. Marathay, “Noncoherent-object hologram: its reconstruction and optical processing,” J. Opt. Soc. Am. A 4, 1861–1868 (1987). [CrossRef]
  58. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13, 9629–9635 (2005). [CrossRef]
  59. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21, 9636–9642 (2013). [CrossRef]
  60. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Recording of 3D spatial and spectral information of self-luminous objects using a Mach-Zehnder radial shearing interferometer,” in 7th International Workshop on Advanced Optical Imaging and Metrology-Fringe 2013, W. Osten, ed. (Springer, 2013), pp. 715–718.
  61. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29, 1625–1630 (1990). [CrossRef]
  62. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999). [CrossRef]
  63. S. Teeranutranont and K. Yoshimori, “Digital holographic three-dimensional imaging spectrometry,” Appl. Opt. 52, A388–A396 (2013). [CrossRef]
  64. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012). [CrossRef]
  65. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012). [CrossRef]
  66. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef]
  67. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012). [CrossRef]
  68. B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).
  69. J. B. Costa, “Modulation effect of the atmosphere in a pyramid wave-front sensor,” Appl. Opt. 44, 60–66 (2005). [CrossRef]
  70. S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51, 6268–6274 (2012). [CrossRef]
  71. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009). [CrossRef]
  72. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005). [CrossRef]
  73. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006). [CrossRef]
  74. P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008). [CrossRef]
  75. Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008). [CrossRef]
  76. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007). [CrossRef]
  77. F. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104(R) (2010). [CrossRef]
  78. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4798 (2004). [CrossRef]
  79. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef]
  80. T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013). [CrossRef]
  81. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  82. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402–1403 (1990). [CrossRef]
  83. J. Frank, S. Altmeyer, and G. Wernicke, “Non-interferometric, non-iterative phase retrieval by Green’s functions,” J. Opt. Soc. Am. A 27, 2244–2251 (2010). [CrossRef]
  84. S. C. Woods and A. H. Greenaway, “Wave-front sensing by use of a Green’s function solution to the intensity transport equation,” J. Opt. Soc. Am. A 20, 508–512 (2003). [CrossRef]
  85. P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51, 5698–5704 (2012). [CrossRef]
  86. Remote Laboratory, http://remotelaboratory.com/ .
  87. University of South Australia NetLab, http://netlab.unisa.edu.au/index.xhtml .
  88. University of South Australia NetLab, http://netlab.unisa.edu.au/index.xhtml .
  89. Johns Hopkins University Virtual Lab, http://www.jhu.edu/virtlab/virtlab.html .
  90. M. Gronle, W. Lyda, M. Wilke, C. Kohler, and W. Osten, “Itom: an open source metrology, automation and data evaluation software,” Appl. Opt. 53, 2974–2982 (2014). [CrossRef]
  91. Open Wonderland, http://openwonderland.org/ .
  92. eSciDoc, https://www.escidoc.org/ .
  93. W. Osten, “Holography and virtual 3D-testing,” in Proceedings of the 1st International Berlin Workshop HoloMet 2000 “New Prospects of Holography and 3D-Metrology,”W. Osten and W. Jüptner, eds. (Strahltechnik Band 14, 2000), pp. 14–17.
  94. W. Osten, T. Baumbach, and W. Jüptner, “A new sensor for remote interferometry,” Proc. SPIE 4596, 158–168 (2001). [CrossRef]
  95. A. Ball and M. Duke, “How to cite datasets and link to publications,” Digital Curation Centre (2011), http://www.dcc.ac.uk/resources/how-guides/cite-datasets .
  96. A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.
  97. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002). [CrossRef]
  98. B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  99. E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006). [CrossRef]
  100. A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation,” in Proceedings of Advances in Neural Information Processing Systems, Vol. 11 (MIT, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited