OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 3 — Jan. 20, 2014
  • pp: 356–367

Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes

Christopher S. Goldenstein, Christopher L. Strand, Ian A. Schultz, Kai Sun, Jay B. Jeffries, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 53, Issue 3, pp. 356-367 (2014)
http://dx.doi.org/10.1364/AO.53.000356


View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development and initial demonstration of a scanned-wavelength, first-harmonic-normalized, wavelength-modulation spectroscopy with nf detection (scanned-WMS-nf/1f) strategy for calibration-free measurements of gas conditions are presented. In this technique, the nominal wavelength of a modulated tunable diode laser (TDL) is scanned over an absorption transition to measure the corresponding scanned-WMS-nf/1f spectrum. Gas conditions are then inferred from least-squares fitting the simulated scanned-WMS-nf/1f spectrum to the measured scanned-WMS-nf/1f spectrum, in a manner that is analogous to widely used scanned-wavelength direct-absorption techniques. This scanned-WMS-nf/1f technique does not require prior knowledge of the transition linewidth for determination of gas properties. Furthermore, this technique can be used with any higher harmonic (i.e., n>1), modulation depth, and optical depth. Selection of the laser modulation index to maximize both signal strength and sensitivity to spectroscopic parameters (i.e., gas conditions), while mitigating distortion, is described. Last, this technique is demonstrated with two-color measurements in a well-characterized supersonic flow within the Stanford Expansion Tube. In this demonstration, two frequency-multiplexed telecommunication-grade TDLs near 1.4 μm were scanned at 12.5 kHz (i.e., measurement repetition rate of 25 kHz) and modulated at 637.5 and 825 kHz to determine the gas temperature, pressure, H2O mole fraction, velocity, and absorption transition lineshape. Measurements are shown to agree within uncertainty (1%–5%) of expected values.

© 2014 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(280.2470) Remote sensing and sensors : Flames
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.1030) Spectroscopy : Absorption
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: August 8, 2013
Manuscript Accepted: November 14, 2013
Published: January 15, 2014

Citation
Christopher S. Goldenstein, Christopher L. Strand, Ian A. Schultz, Kai Sun, Jay B. Jeffries, and Ronald K. Hanson, "Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes," Appl. Opt. 53, 356-367 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-3-356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011). [CrossRef]
  2. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000). [CrossRef]
  3. J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005). [CrossRef]
  4. G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007). [CrossRef]
  5. K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110, 497–508 (2013). [CrossRef]
  6. R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249–254 (2002). [CrossRef]
  7. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229–236 (2002). [CrossRef]
  8. J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst. 27, 1–41 (1998).
  9. L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009). [CrossRef]
  10. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef]
  11. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625 (2005). [CrossRef]
  12. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  13. G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009). [CrossRef]
  14. T. R. Meyer, S. Roy, T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, and J. R. Gord, “10 kHz detection of CO2 at 4.5 μm by using tunable diode-laser-based difference-frequency generation,” Opt. Lett. 30, 3087–3089 (2005). [CrossRef]
  15. M. Seiter and M. W. Sigrist, “On-line multicomponent trace-gas analysis with a broadly tunable pulsed difference-frequency laser spectrometer,” Appl. Opt. 38, 4691–4698 (1999). [CrossRef]
  16. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005). [CrossRef]
  17. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef]
  18. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef]
  19. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982). [CrossRef]
  20. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009). [CrossRef]
  21. C. L. Strand and R. K. Hanson, “Thermometry and velocimetry in supersonic flows via scanned wavelength-modulation absorption spectroscopy,” in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (American Institute of Aeronautics and Astronautics, 2011), paper AIAA 2011-5600.
  22. L. S. Chang, J. B. Jeffries, and R. K. Hanson, “Mass flux sensing via tunable diode laser absorption of water vapor,” AIAA J. 48, 2687–2693 (2010). [CrossRef]
  23. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  24. P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta, Part A 52, 805–822 (1996). [CrossRef]
  25. D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988). [CrossRef]
  26. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006). [CrossRef]
  27. K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode-laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line shapes,” J. Lightwave Technol. 25, 3114–3125 (2007). [CrossRef]
  28. J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—part 2: experimental investigation,” J. Lightwave Technol. 29, 987–996 (2011). [CrossRef]
  29. K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24, 125203 (2013). [CrossRef]
  30. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007). [CrossRef]
  31. K. H. Lyle, J. B. Jeffries, and R. K. Hanson, “Diode-laser sensor for air-mass flux 1: design and wind tunnel validation,” AIAA J. 45, 2204–2212 (2007). [CrossRef]
  32. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  33. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transfer 83, 345–360 (2004). [CrossRef]
  34. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. Theory,” Appl. Opt. 40, 783–793 (2001). [CrossRef]
  35. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  36. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 109, 132–143 (2008). [CrossRef]
  37. C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm,” J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013). [CrossRef]
  38. C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in non-uniform gases,” Appl. Opt. 52, 7950–7962 (2013). [CrossRef]
  39. G. B. Rieker, “Wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Ph. D. dissertation (Stanford University, 2009).
  40. C. S. Goldenstein, R. M. Spearrin, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 1.4 μm for measurements of H2O and temperature in high-pressure and—temperature gases,” Meas. Sci. Technol. (in press).
  41. W. N. Heltsley, J. A. Snyder, A. J. Houle, D. F. Davidson, M. G. Mungal, and R. K. Hanson, “Design and characterization of the Stanford 6 inch expansion tube,” in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (American Institute of Aeronautics and Astronautics, 2006), paper AIAA 2006-4443.
  42. R. L. Trimpi, A preliminary theoretical study of the expansion tube, a new device for producing high-enthalpy short-duration Hypersonic Gas Flows Tech. Rep., (1962).
  43. V. A. Miller, M. Gamba, M. G. Mungal, and R. K. Hanson, “Secondary diaphragm thickness effects and improved pressure measurements in an expansion tube,” AIAA J. (in press).
  44. M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Combustion characteristics of an inlet/supersonic combustor model,” in 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2012), paper AIAA 2012-0612.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited