OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 3 — Jan. 20, 2014
  • pp: 435–440

Generation of incoherent light from a laser diode subject to external optical injection from a superluminescent diode

Akifumi Takamizawa, Shinya Yanagimachi, and Takeshi Ikegami  »View Author Affiliations

Applied Optics, Vol. 53, Issue 3, pp. 435-440 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, incoherent light with a spectral linewidth of 7 nm and 140 mW of power was generated from a laser diode (LD) into which incoherent light emitted from a superluminescent diode was injected with 2.7 mW of power. The spectral linewidth of the light from the LD was broadened to 12 nm when the diode’s output power was reduced to 15 mW. In the process of transformation from single-mode laser light to incoherent light with a broad spectrum by increasing injection-light power, multimode laser oscillation and a noisy spectrum were found in the light from the LD. This optical system can be used not only for amplification of incoherent light but also as a coherence-convertible light source.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.3520) Lasers and laser optics : Lasers, injection-locked

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 8, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: December 23, 2013
Published: January 16, 2014

Akifumi Takamizawa, Shinya Yanagimachi, and Takeshi Ikegami, "Generation of incoherent light from a laser diode subject to external optical injection from a superluminescent diode," Appl. Opt. 53, 435-440 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981). [CrossRef]
  2. L. A. Wang and C. D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol. 17, 2307–2315 (1999). [CrossRef]
  3. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994). [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  6. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004). [CrossRef]
  7. T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999). [CrossRef]
  8. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004). [CrossRef]
  9. C. E. Dimas, H. S. Djie, and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth 288, 153–156 (2006). [CrossRef]
  10. Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011). [CrossRef]
  11. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981). [CrossRef]
  12. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  13. H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067–1069 (2000). [CrossRef]
  14. S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, and C. Y. Park, “Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb,” Opt. Lett. 31, 3594–3596 (2006). [CrossRef]
  15. V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010). [CrossRef]
  16. H. Kim, “Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks,” Opt. Express 18, 1714–1721 (2010). [CrossRef]
  17. N. Kuse, A. Ozawa, Y. Nomura, I. Ito, and Y. Kobayashi, “Injection locking of Yb-fiber based optical frequency comb,” Opt. Express 20, 10509–10518 (2012). [CrossRef]
  18. Z. Al-Qazwini and H. Kim, “5-Gb/s optical transmitter based on incoherent-light-injected RSOAs with graceful upgrade capability for WDM PONs,” Opt. Express 21, 8135–8141 (2013). [CrossRef]
  19. R. H. Pantell, “The laser oscillator with an external signal,” Proc. IEEE 53, 474–477 (1965). [CrossRef]
  20. C. L. Tang and H. Statz, “Phase-locking of laser oscillators by injected signal,” J. Appl. Phys. 38, 323–324 (1967). [CrossRef]
  21. K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].
  22. K. Otsuka and S. Tarucha, “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electron. 17, 1515–1521 (1981). [CrossRef]
  23. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982). [CrossRef]
  24. J. P. Gordon, “Quantum theory of a simple maser oscillator,” Phys. Rev. 161, 367–386 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited