OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 3 — Jan. 20, 2014
  • pp: 441–446

Extended tunable optical delay using gain-transparent stimulated Brillouin scattering control in four-wave-mixing wavelength conversion

Liang Wang, Chaoran Huang, and Chester Shu  »View Author Affiliations

Applied Optics, Vol. 53, Issue 3, pp. 441-446 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate an extended range of tunable optical delay obtained from four-wave mixing wavelength conversion and dispersion. The conversion bandwidth and the maximum delay are enlarged through dynamic control of the optical phase by gain-transparent stimulated Brillouin scattering. The delay range is increased by 37%. Bit-error-rate measurements show a maximum power penalty of 2.0 dB with reference to back-to-back performance. The technique can be applied to different configurations of tunable delay lines constructed with a fiber parametric process and dispersion.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 7, 2013
Revised Manuscript: December 15, 2013
Manuscript Accepted: December 16, 2013
Published: January 16, 2014

Liang Wang, Chaoran Huang, and Chester Shu, "Extended tunable optical delay using gain-transparent stimulated Brillouin scattering control in four-wave-mixing wavelength conversion," Appl. Opt. 53, 441-446 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3, 489–500 (1995). [CrossRef]
  2. X. Wu, J. Wang, O. F. Yilmaz, S. R. Nuccio, A. Bogoni, and A. E. Willner, “Bit-rate-variable and order-switchable optical multiplexing of high-speed pseudorandom bit sequence using optical delays,” Opt. Lett. 35, 3042–3044 (2010). [CrossRef]
  3. X. Wu, S. R. Nuccio, O. F. Yilmaz, J. Wang, A. Bogoni, and A. E. Willner, “Controllable optical demultiplexing using continuously tunable optical parametric delay at 160 Gbit/s with <0.1 ps resolution,” Opt. Lett. 34, 3926–3928 (2009). [CrossRef]
  4. Zh. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13, 10431–10439 (2005). [CrossRef]
  5. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997). [CrossRef]
  6. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).
  7. I. Kobayashi and K. Kuroda, “Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology,” IEEE Trans. Instrum. Meas. 49, 762–765 (2000). [CrossRef]
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]
  10. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  11. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005). [CrossRef]
  12. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005). [CrossRef]
  13. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005). [CrossRef]
  14. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008). [CrossRef]
  15. R. S. Tucker, P.-Ch. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  16. Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022–12027 (2006). [CrossRef]
  17. M. P. Fok and C. Shu, “Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber and group velocity dispersion,” J. Lightwave Technol. 26, 499–504 (2008). [CrossRef]
  18. S. R. Nuccio, O. F. Yilmaz, X. Wang, J. Wang, X. Wu, and A. E. Willner, “1.16 μs continuously tunable optical delay of a 100-Gb/s DQPSK signal using wavelength conversion and chromatic dispersion in an HNLF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFJ2.
  19. E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-μs continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17, 11958–11964 (2009). [CrossRef]
  20. N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “1.83-μs wavelength-transparent all-optical delay,” in Optical Fiber Communication Conference (2009), paper PDPA1.
  21. S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 μs wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35, 2985–2987 (2010). [CrossRef]
  22. N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28, 448–455 (2010). [CrossRef]
  23. Y. Dai, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, and C. Xu, “Ultralong continuously tunable parametric delays via a cascading discrete stage,” Opt. Express 18, 333–339 (2010). [CrossRef]
  24. E. Mateo, F. Yaman, and G. Li, “Control of four-wave mixing phase-matching condition using the Brillouin slow-light effect in fibers,” Opt. Lett. 33, 488–490 (2008). [CrossRef]
  25. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006). [CrossRef]
  26. L. Wang and C. Shu, “Four-wave mixing bandwidth enlargement using phase-matching control by gain-transparent stimulated Brillouin scattering,” in Photonics in Switching Conference (2012), postdeadline paper 2.
  27. L. Wang and C. Shu, “Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude- and phase-modulated signals,” J. Lightwave Technol. 31, 1468–1474 (2013). [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2009).
  29. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited