OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 3 — Jan. 20, 2014
  • pp: 475–486

Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system

Ming-Hui Tan, Kok-Keong Chong, and Chee-Woon Wong  »View Author Affiliations

Applied Optics, Vol. 53, Issue 3, pp. 475-486 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.

© 2014 Optical Society of America

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(230.4040) Optical devices : Mirrors
(220.4298) Optical design and fabrication : Nonimaging optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 10, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 11, 2013
Published: January 17, 2014

Ming-Hui Tan, Kok-Keong Chong, and Chee-Woon Wong, "Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system," Appl. Opt. 53, 475-486 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010). [CrossRef]
  2. A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.
  3. G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.
  4. C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009). [CrossRef]
  5. E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008). [CrossRef]
  6. G. Johnston, K. Lovegrove, and A. Luzzi, “Optical performance of spherical reflecting elements for use with paraboloidal dish concentrator,” Sol. Energy 74, 133–140 (2003). [CrossRef]
  7. S. Ulmer, P. Heller, and W. Reinalter, “Slope measurements of parabolic dish concentrators using color-coded targets,” J. Sol. Energy Eng. 130, 011015 (2008). [CrossRef]
  8. V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.
  9. J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy 78, 211–222 (2005). [CrossRef]
  10. E. Franklin and J. Coventry, “Effects of highly non-uniform illumination distribution on electrical performance of solar cells,” in ANZSES Solar Conference, New Castle, Australia (2002).
  11. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006). [CrossRef]
  12. D. Faiman, S. Biryukov, and K. K. Pearlmutter, “PETAL: a research pathway to fossil-competitive solar electricity,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1384–1387.
  13. D. R. Mills and G. L. Morrison, “Compact linear Fresnel reflector solar thermal power plants,” Sol. Energy 68, 263–283 (2000). [CrossRef]
  14. K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006). [CrossRef]
  15. Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.
  16. K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006). [CrossRef]
  17. H. Ries, J. M. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997). [CrossRef]
  18. G. Segev and A. Kribus, “Performance of CPV modules based on vertical multi-juctNion cells under non-uniform illuminations,” Sol. Energy 88, 120–128 (2013). [CrossRef]
  19. Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013). [CrossRef]
  20. K. Kreske, “Optical design of a solar flux homogenizer for concentrator photovoltaics,” Appl. Opt. 41, 2053–2058 (2002). [CrossRef]
  21. K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009). [CrossRef]
  22. K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application13/901,519 (filed on May23, 2013, pending).
  23. K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May31, 2012, pending).
  24. C.-W. Wong, K.-K. Chong, and T.-K. Yew, “Analytical model of non-imaging planar concentrator for the application in dense-array concentrator photovoltaic system,” in 1st International Symposium on Innovative Technologies in Engineering and Science (2013), pp. 679–686.
  25. Emcore, 2012. “CTJ photovoltaic cell – 10  mm × 10 mm, triple junction solar cell for terrestrial applications,” http://www.emcore.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited