OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 3 — Jan. 20, 2014
  • pp: 503–510

Motor response investigation in individuals with cerebral palsy using near infrared spectroscopy: pilot study

Ujwal Chaudhary, Michael Hall, Jean Gonzalez, Leonard Elbaum, Martha Bloyer, and Anuradha Godavarty  »View Author Affiliations

Applied Optics, Vol. 53, Issue 3, pp. 503-510 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cerebral palsy (CP) describes a group of motor impairment syndromes secondary to genetic that may be due to acquired disorders of the developing brain. In this study, near infrared spectroscopy (NIRS) is used to investigate the prefrontal cortical activation and lateralization in response to the planning and execution of motor skills in controls and individuals with CP. The prefrontal cortex, which plays a dominant role in the planning and execution of motor skill stimulus, is noninvasively imaged using a continuous wave-based NIRS system. During the study, 7 controls (4 right-handed and 3 left-handed) and 2 individuals with CP (1 right-handed and 1 left-handed) over 18 years of age performed 30 s of a ball throwing task followed by 30 s rest in a 5-block paradigm. The optical signal acquired from the NIRS system was processed to elucidate the activation and lateralization in the prefrontal region of controls and individuals with CP. The preliminary result indicated a difference in activation between the task and rest conditions in all the participant types. Bilateral dominance was observed in the prefrontal cortex of controls in response to planning and execution of motor skill tasks, while an ipsilateral dominance was observed in individuals with CP. In conjunction, similar contralateral dominance was observed during rest periods, both in controls and individuals with CP.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 14, 2013
Revised Manuscript: November 13, 2013
Manuscript Accepted: December 20, 2013
Published: January 20, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Ujwal Chaudhary, Michael Hall, Jean Gonzalez, Leonard Elbaum, Martha Bloyer, and Anuradha Godavarty, "Motor response investigation in individuals with cerebral palsy using near infrared spectroscopy: pilot study," Appl. Opt. 53, 503-510 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Kirby, M. S. Wingate, K. Van Naarden Braun, N. S. Doernberg, C. L. Arneson, R. E. Benedict, B. Mulvihill, M. S. Durkin, R. T. Fitzgerald, M. J. Maenner, J. A. Patz, and M. Yeargin-Allsopp, “Prevalence and functioning of children with cerebral palsy in four areas of the United States in 2006: a report from the autism and developmental disabilities monitoring network,” Res. Dev. Disabil. 32, 462–469 (2011).
  2. M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, and D. Damiano, “Executive committee for the definition of cerebral palsy, proposed definition and classification of cerebral palsy,” Dev. Med. Child Neurol. 47, 571–576 (2005). [CrossRef]
  3. A. H. Hoon and M. V. Johnston, “Cerebral palsy,” in Diseases of the Nervous System: Clinical Neuroscience and Therapeutic Principles, A. K. Asbury, G. M. McKhann, and W. I. McDonald, eds. (Cambridge University, 2002), p. 568.
  4. M. V. Johnston, “Encephalopathies,” in Nelson Textbook of Pediatrics, R. M. Kliegman, R. E. Behrman, H. B. Jenson, and B. F. Stanton, eds. (Saunders Elsevier, 2011).
  5. D. A. Umphred, Neurological Rehabilitation, 5th ed. (Mosby Elsevier, 2007).
  6. J. D. Janis and L. R. Robert, “Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients,” Sci. World J. 7, 2031–2045 (2007). [CrossRef]
  7. P. Nevalainen, E. Pihko, H. Maenpaa, L. Valanne, L. Nummenmaa, and L. Lauronen, “Bilateral alterations in somatosensory cortical processing in hemiplegic cerebral palsy,” Dev. Med. Child. Neurol. 54, 361–367 (2012). [CrossRef]
  8. P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, and J. I. Ausman, “Intracerebral penetration of infrared light: technical note,” J. Neurosurg. 76, 315–318 (1992). [CrossRef]
  9. M. Cope, D. T. Delpy, E. O. R. Reynolds, S. Wray, J. Wyatt, and P. Van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1987).
  10. D. A. Boas and M. A. Dale Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004). [CrossRef]
  11. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002). [CrossRef]
  12. B. Chance, J. S. Leigh, H. Miyake, D. S. Smiths, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988). [CrossRef]
  13. H. R. Heekeren, H. Obrig, R. Wenzel, K. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during sustained visual stimulation—a near-infrared spectroscopy study,” Phil. Trans. R. Soc. B 352, 743–750 (1997). [CrossRef]
  14. J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral hemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. R. Soc. Lond. 261, 351–356 (1995). [CrossRef]
  15. J. Ruben, R. Wenzel, H. Obrig, K. Villringer, J. Bernarding, C. Hirth, H. Heekeren, U. Dirnagl, and A. Villringer, “Hemoglobin oxygenation changes during visual stimulation in the occipital cortex,” Adv. Exp. Med. Biol. 428, 181–187 (1997). [CrossRef]
  16. K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999). [CrossRef]
  17. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near infrared optical imaging,” Psychophysiology 40, 548–560 (2003). [CrossRef]
  18. H. Obrig, C. Hirth, J. G. Junge-Hulsing, C. Doge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J. Appl. Physiol. 81, 1174–1183 (1996).
  19. W. N. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, “Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot,” Exp. Brain Res. 129, 457–461 (1999). [CrossRef]
  20. C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Muhlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” NeuroReport 7, 1977–1981 (1996). [CrossRef]
  21. T. H. Schwartz, “The application of optical recording of intrinsic signals to simultaneously acquire functional, pathological and localizing information and its potential role in neurosurgery,” Stereotact. Funct. Neurosurg. 83, 36–44 (2005). [CrossRef]
  22. H. Sato, T. Takeuchi, and K. L. Sakai, “Temporal cortex activation during speech recognition: an optical topography study,” Cognition 73, B55–B66 (1999). [CrossRef]
  23. P. D. Adelson, E. Nemoto, M. Scheuer, M. Painter, J. Morgan, and H. Yonas, “Noninvasive continuous monitoring of cerebral oxygenation perictally using near-infrared spectroscopy: a preliminary report,” Epilepsia 40, 1484–1489 (1999). [CrossRef]
  24. D. K. Sokol, O. N. Markand, E. C. Daly, T. G. Luerssen, and M. D. Malkoff, “Near infrared spectroscopy (NIRS) distinguishes seizure types,” Seizure 9, 323–327 (2000). [CrossRef]
  25. E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000). [CrossRef]
  26. G. W. Eschweiler, C. Wegerer, W. Schlotter, C. Spandl, A. Stevens, M. Bartels, and G. Buchkremer, “Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression,” Psychiatry Res. 99, 161–172 (2000). [CrossRef]
  27. K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci. 12, 465–471 (2000). [CrossRef]
  28. F. Tian, M. R. Delgado, S. C. Dhamne, G. Alexandrakis, M. I. Romero, L. Smith, B. Khan, D. Reid, N. J. Clegg, and H. Liu, “Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy,” Opt. Express 18, 25973–25986 (2010). [CrossRef]
  29. B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15, 036008 (2010). [CrossRef]
  30. J. Duncan and A. M. Owen, “Common regions of the human frontal lobe recruited by diverse cognitive demands,” Trends Neurosci. 23, 475–483 (2000). [CrossRef]
  31. B. Faw, “Pre-frontal executive committee for perception, working memory, attention, long-term memory, motor control, and thinking: a tutorial review,” Conscious. Cogn. 12, 83–139 (2003). [CrossRef]
  32. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48, D280–D298 (2009). [CrossRef]
  33. A. Gartus, T. Foki, A. Geissler, and R. Beisteiner, “Improvement of clinical language localization with an overt semantic and syntactic language functional MRI imaging paradigm,” Am. J. Neuroradiol. 30, 1977–1985 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited