OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: 544–552

Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines

Long Liang, Tianlong Zhang, Kang Wang, Hongsheng Tang, Xiaofeng Yang, Xiaoqin Zhu, Yixiang Duan, and Hua Li  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. 544-552 (2014)
http://dx.doi.org/10.1364/AO.53.000544


View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The feasibility of steel materials classification by support vector machines (SVMs), in combination with laser-induced breakdown spectroscopy (LIBS) technology, was investigated. Multi-classification methods based on SVM, the one-against-all and the one-against-one models, and a combination model, are applied to classify nine types of round steel. Due to the inhomogeneity of steel composition, the data obtained using the one-against-all and one-against-one models were ambiguous and difficult to discriminate; whereas, the combination model, was able to successfully distinguish most of the ambiguous data and control the computation cost within an acceptable range. The studies presented here demonstrate that LIBS–SVM is a useful technique for the identification and discrimination of steel materials, and would be very well-suited for process analysis in the steelmaking industry.

© 2014 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(280.1545) Remote sensing and sensors : Chemical analysis
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 17, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 9, 2013
Published: January 23, 2014

Citation
Long Liang, Tianlong Zhang, Kang Wang, Hongsheng Tang, Xiaofeng Yang, Xiaoqin Zhu, Yixiang Duan, and Hua Li, "Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines," Appl. Opt. 53, 544-552 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-4-544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (Cambridge University, 2006).
  3. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010). [CrossRef]
  4. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012). [CrossRef]
  5. F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013). [CrossRef]
  6. E. G. Snyder, C. A. Munson, J. L. Gottfried, F. C. De Lucia, B. Gullett, and A. Miziolek, “Laser-induced breakdown spectroscopy for the classification of unknown powders,” Appl. Opt. 47, G80–G87 (2008). [CrossRef]
  7. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003). [CrossRef]
  8. J. B. Sirven, B. Sallé, P. Mauchien, J. L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007). [CrossRef]
  9. S. Palanco and J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000). [CrossRef]
  10. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Moench, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001). [CrossRef]
  11. J. Belliveau, L. Cadwell, K. Coleman, L. Huwel, and H. Griffin, “Laser-induced breakdown spectroscopy of steels at atmospheric pressure and in air,” Appl. Spectrosc. 39, 727–729 (1985). [CrossRef]
  12. F. Boue-Bigne, “Analysis of oxide inclusions in steel by fast laser-induced breakdown spectroscopy scanning: an approach to quantification,” Appl. Spectrosc. 61, 333–337 (2007). [CrossRef]
  13. C. Aragon, J. A. Aguilera, and J. Campos, “Determination of carbon content in molten steel using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 47, 606–608 (1993). [CrossRef]
  14. L. M. Cabalin, D. Romero, C. C. Garcia, J. M. Baena, and J. J. Laserna, “Time-resolved laser-induced plasma spectrometry for determination of minor elements in steelmaking process samples,” Anal. Bioanal. Chem. 372, 352–359 (2002). [CrossRef]
  15. V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, “Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn, and Mo,” J. Anal. At. Spectrom. 19, 451–456 (2004). [CrossRef]
  16. F. Boué-Bigne, “Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization,” Spectrochim. Acta, Part B 63, 1122–1129 (2008). [CrossRef]
  17. S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser-induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462–467 (2004). [CrossRef]
  18. M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: state of the art,” Spectrochim. Acta, Part B 81, 1–10 (2013). [CrossRef]
  19. C. Palagas, P. Stavropoulos, S. Couris, G. N. Angelopoulos, I. Kolm, and D. C. Papamantellos, “Investigation of the parameters influencing the accuracy of rapid steelmaking slag analysis with laser-induced breakdown spectroscopy,” Steel Res. Int. 78, 693–703 (2007).
  20. F. R. Doucet, T. F. Belliveau, J. L. Fortier, and J. Hubert, “Use of chemometrics and laser-induced breakdown spectroscopy for quantitative analysis of major and minor elements in aluminum alloys,” Appl. Spectrosc. 61, 327–332 (2007). [CrossRef]
  21. A. Jurado-López and M. D. Luque de Castro, “Chemometric approach to laser-induced breakdown analysis of gold alloys,” Appl. Spectrosc. 57, 349–352 (2003). [CrossRef]
  22. J. Wormhoudt, F. J. Iannarilli, S. Jones, K. D. Annen, and A. Freedman, “Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer,” Appl. Spectrosc. 59, 1098–1102 (2005). [CrossRef]
  23. F. B. Gonzaga and C. A. Pasquini, “Complementary metal oxide semiconductor sensor array-based detection system for laser-induced breakdown spectroscopy: evaluation of calibration strategies and application for manganese determination in steel,” Spectrochim. Acta, Part B 63, 56–63 (2008). [CrossRef]
  24. M. Kraushaar, R. Noll, and H.-U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. 57, 1282–1287 (2003). [CrossRef]
  25. J. M. Prats-Montalban, A. Ferrer, J. L. Malo, and J. Gorbena, “A comparison of different discriminant analysis techniques in a steel industry welding process,” Chemometr. Intell. Lab. Syst. 80, 109–119 (2006). [CrossRef]
  26. C. B. Stipe, B. D. Hensley, J. L. Boersema, and S. G. Buckley, “Laser-induced breakdown spectroscopy of steel: a comparison of univariate and multivariate calibration methods,” Appl. Spectrosc. 64, 154–160 (2010). [CrossRef]
  27. J. W. B. Braga, L. C. Trevizan, L. C. Nunes, I. A. Rufini, D. Santos, and F. J. Krug, “Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser-induced breakdown spectrometry,” Spectrochim. Acta, Part B 65, 66–74 (2010). [CrossRef]
  28. Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182 (2011). [CrossRef]
  29. J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A non-linearized multivariate dominant factor–based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 400, 3261–3271 (2011).
  30. J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52, B10–B19 (2013). [CrossRef]
  31. A. M. Ollila, J. Lasue, H. E. Newson, R. A. Multari, R. C. Wiens, and S. M. Clegg, “Comparison of two party all least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument,” Appl. Opt. 51, B130–B142 (2012). [CrossRef]
  32. A. Ramil, A. J. López, and A. Yáňez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser-induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008). [CrossRef]
  33. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machine and Other Kernel-based Learning Methods (Cambridge University, 2000).
  34. N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari, and M. K. Gundawar, “Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability,” Anal. Chem. 84, 2686–2694 (2012). [CrossRef]
  35. F. Anabitarte, J. Mirapeix, O. M. C. Portilla, J. M. Lopez-Higuera, S. Member, and A. Cobo, “Sensor for the detection of protective coating traces on boron steel with aluminium–silicon covering by means of laser-induced breakdown spectroscopy and support vector machines,” IEEE. Sens. J. 12, 64–70 (2012). [CrossRef]
  36. J. Cisewski, E. Snyder, J. Hannig, and L. Oudejans, “Support vector machine classification of suspect powders using laser-induced breakdown spectroscopy (LIBS) spectral data,” J. Chemom. 26, 143–149 (2012). [CrossRef]
  37. M. Hoehse, A. Paul, I. Gornushkin, and U. Panne, “Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS,” Anal. Bioanal. Chem. 402, 1443–1450 (2012). [CrossRef]
  38. K. Crammer and Y. Singer, “On the learnability and design of output codes for multiclass problems,” Mach. Learn. 47, 201–233 (2002). [CrossRef]
  39. V. N. Vapnik, Statistical Learning Theory (Wiley, 1998).
  40. J. Weston and C. Watkins, “Multi-class support vector machines,” Technical Report (Department of Computer Science, Royal Holloway, University of London, 1998).
  41. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” http://www.csie.ntu.edu.tw/~cjlin/libsvm/ .
  42. C. Cortes and V. Vapnik, “Support-vector network,” Mach. Learn. 20, 273–297 (1995).
  43. T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The element of statistical learning: data mining, inference, and prediction,” Math. Intell. 27, 83–85 (2005). [CrossRef]
  44. P. Garcia-Allende, F. Anabitarte, O. Conde, J. Mirapeix, F. Madruga, and J. Lopez-Highera, “Support vector machines in hyperspectral imaging spectroscopy with application to material identification,” Proc. SPIE 6966, 69661V (2008). [CrossRef]
  45. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” J. Data Mini. Know. Disc. 2, 121–167 (1998).
  46. K. Hasegawa and K. Funatsu, “Non-linear modeling and chemical interpretation with aid of support vector machine and regression,” Curr. Comput. Aided Drug Des. 6, 24–36 (2010). [CrossRef]
  47. C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE. Trans. Neural Netw. 13, 415–425 (2002).
  48. L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik, “Comparison of classifier methods: a case study in handwriting digit recognition,” Pattern Recogn. 2, 77–87 (1994).
  49. J. H. Friedman, “Another approach to polychotomous classification,” (Department of Statistics, Stanford University, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited