OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: 618–624

Phase retrieval using a modified Shack–Hartmann wavefront sensor with defocus

Changwei Li, Bangming Li, and Sijiong Zhang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 4, pp. 618-624 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (880 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper proposes a modified Shack–Hartmann wavefront sensor for phase retrieval. The sensor is revamped by placing a detector at a defocused plane before the focal plane of the lenslet array of the Shack–Hartmann sensor. The algorithm for phase retrieval is an optimization with initial Zernike coefficients calculated by the conventional phase reconstruction of the Shack–Hartmann sensor. Numerical simulations show that the proposed sensor permits sensitive, accurate phase retrieval. Furthermore, experiments tested the feasibility of phase retrieval using the proposed sensor. The surface irregularity for a flat mirror was measured by the proposed method and a Veeco interferometer, respectively. The irregularity for the mirror measured by the proposed method is in very good agreement with that measured using the Veeco interferometer.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.5070) Image processing : Phase retrieval

ToC Category:
Image Processing

Original Manuscript: November 6, 2013
Revised Manuscript: December 17, 2013
Manuscript Accepted: December 18, 2013
Published: January 24, 2014

Changwei Li, Bangming Li, and Sijiong Zhang, "Phase retrieval using a modified Shack–Hartmann wavefront sensor with defocus," Appl. Opt. 53, 618-624 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).
  2. J. Gonglewski, D. Voelz, J. Fender, D. Dayton, B. Spielbusch, and R. Pierson, “First astronomical application of postdetection turbulence compensation: images of α Aurigae, ν Ursae Majoris, and α Geminorum using self-referenced speckle holography,” Appl. Opt. 29, 4527–4529 (1990). [CrossRef]
  3. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Wayne, S. E. Winters, and B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540–4546 (2000). [CrossRef]
  4. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001). [CrossRef]
  5. E. Moreno-Barriuso and R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000). [CrossRef]
  6. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, and D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37, 140–155 (1998). [CrossRef]
  7. J. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wavefront sensor,” Appl. Opt. 44, 4838–4845 (2005). [CrossRef]
  8. G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006). [CrossRef]
  9. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006). [CrossRef]
  10. J. Ares and J. Arines, “Influence of thresholding on centroid statistics: full analytical description,” Appl. Opt. 43, 5796–5805 (2004). [CrossRef]
  11. R. Irwan and R. G. Lane, “Analysis of optimal centroid estimation applied to Shack–Hartmann sensing,” Appl. Opt. 38, 6737–6743 (1999). [CrossRef]
  12. G. Cao and X. Yu, “Accuracy analysis of a Hartmann–Shack wavefront sensor operated with a faint object,” Opt. Eng. 33, 2331–2335 (1994). [CrossRef]
  13. S. Ríos and D. López, “Modified Shack–Hartmann wavefront sensor using an array of superresolution pupil filters,” Opt. Express 17, 9669–9679 (2009). [CrossRef]
  14. D. López and S. Ríos, “Interferometric Shack–Hartmann wavefront sensor with an array of four-hole apertures,” Appl. Opt. 49, 2334–2338 (2010). [CrossRef]
  15. A. Polo, V. Kutchoukov, F. Bociort, S. Pereira, and H. Urbach, “Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method,” Opt. Express 20, 7822–7832 (2012). [CrossRef]
  16. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982). [CrossRef]
  17. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A 20, 1490–1504 (2003). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  19. M. Vorontsov and V. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. 15, 2745–2758 (1998). [CrossRef]
  20. M. Vorontsov, G. Carhart, and J. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997). [CrossRef]
  21. G. Cauwenberghs, “A fast stochastic error-descent algorithm for supervised learning and optimization,” in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. L. Giles, eds., Vol. 5 (Morgan Kaufman, 1993), pp. 244–251.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited