OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: 666–673

Nonlinear regression method for estimating neutral wind and temperature from Fabry–Perot interferometer data

Brian J. Harding, Thomas W. Gehrels, and Jonathan J. Makela  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. 666-673 (2014)
http://dx.doi.org/10.1364/AO.53.000666


View Full Text Article

Enhanced HTML    Acrobat PDF (4938 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Earth’s thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry–Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry–Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.

© 2014 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(300.2140) Spectroscopy : Emission
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 16, 2013
Revised Manuscript: December 16, 2013
Manuscript Accepted: December 20, 2013
Published: January 28, 2014

Citation
Brian J. Harding, Thomas W. Gehrels, and Jonathan J. Makela, "Nonlinear regression method for estimating neutral wind and temperature from Fabry–Perot interferometer data," Appl. Opt. 53, 666-673 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-4-666


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Heelis, “Electrodynamics in the low and middle latitude ionosphere: a tutorial,” J. Atmos. Sol. Terr. Phys. 66, 825–838 (2004). [CrossRef]
  2. E. Kudeki, A. Akgiray, M. Milla, J. Chau, and D. L. Hysell, “Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves,” J. Atmos. Sol. Terr. Phys. 69, 2416–2427 (2007). [CrossRef]
  3. T. J. Fuller-Rowell, M. V. Codrescu, R. J. Moffett, and S. Quegan, “Response of the thermosphere and ionosphere to geomagnetic storms,” J. Geophys. Res. 99, 3893 (1994). [CrossRef]
  4. M. Biondi, D. P. Sipler, M. E. Zipf, and J. L. Baumgardner, “All-sky Doppler interferometer for thermospheric dynamics studies,” Appl. Opt. 34, 1646–1654 (1995). [CrossRef]
  5. G. Hernandez, Fabry-Perot Interferometers, Cambridge Studies in Modern Optics (Cambridge University, 1988).
  6. C. G. M. Brum, C. A. Tepley, J. T. Fentzke, E. Robles, P. T. dos Santos, and S. A. Gonzalez, “Long-term changes in the thermospheric neutral winds over Arecibo: climatology based on over three decades of Fabry-Perot observations,” J. Geophys. Res. 117, A00H14 (2012). [CrossRef]
  7. T. Killeen and P. Hays, “Doppler line profile analysis for a multichannel Fabry-Perot interferometer,” Appl. Opt. 23, 612–620 (1984). [CrossRef]
  8. J. J. Makela, J. W. Meriwether, Y. Huang, and P. J. Sherwood, “Simulation and analysis of a multi-order imaging Fabry-Perot interferometer for the study of thermospheric winds and temperatures,” Appl. Opt. 50, 4403–4416 (2011). [CrossRef]
  9. K. Shiokawa, T. Kadota, M. K. Ejiri, Y. Otsuka, Y. Katoh, M. Satoh, and T. Ogawa, “Three-channel imaging fabry-perot interferometer for measurement of mid-latitude airglow,” Appl. Opt. 40, 4286–4296 (2001). [CrossRef]
  10. M. Conde, “Deriving wavelength spectra from fringe images from a fixed-gap single-etalon Fabry-Perot spectrometer,” Appl. Opt. 41, 2672–2678 (2002). [CrossRef]
  11. K. Shiokawa, Y. Otsuka, S. Oyama, S. Nozawa, M. Satoh, Y. Katoh, Y. Hamaguchi, Y. Yamamoto, and J. Meriwether, “Development of low-cost sky-scanning Fabry-Perot interferometers for airglow and auroral studies,” Earth Planets Space 64, 1033–1046 (2012). [CrossRef]
  12. J. J. Makela, J. W. Meriwether, J. Lima, E. S. Miller, and S. Armstrong, “The remote equatorial nighttime observatory of ionospheric regions project and the international heliospherical year,” Earth Moon Planets 104, 211–226 (2009). [CrossRef]
  13. P. B. Hays and R. G. Roble, “A technique for recovering Doppler line profiles from Fabry-Perot interferometer fringes of very low intensity,” Appl. Opt. 10, 193–200 (1971). [CrossRef]
  14. S. Armstrong, “Fabry-Perot data analysis and simulation for the renoir observatories,” Master’s thesis, (University of Illinois, 2008).
  15. M. Newville, “Non-linear least-square minimization for python,” http://newville.github.io/lmfit-py/ (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited