OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: 731–735

Frequency-noise removal and on-line calibration for accurate frequency comb interference spectroscopy of acetylene

Jean-Daniel Deschênes and Jérôme Genest  »View Author Affiliations

Applied Optics, Vol. 53, Issue 4, pp. 731-735 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that using appropriate signal-processing techniques allows us to greatly improve the signal-to-noise ratio and accuracy of frequency comb interference spectroscopy measurements. We show that the phase noise from the continuous wave laser used as local oscillator is common to all beat notes and can be removed, enabling longer coherent integration time. An on-line calibration of the spectrum normalizes the frequency response of the electronics. The signal power-to-noise ratio of the spectra thus obtained is a factor of 16,000 (42 dB) higher than in previously demonstrated results, and the quality of the spectra is much higher.

© 2014 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6530) Spectroscopy : Spectroscopy, ultrafast

ToC Category:

Original Manuscript: October 30, 2013
Revised Manuscript: December 28, 2013
Manuscript Accepted: December 30, 2013
Published: January 30, 2014

Jean-Daniel Deschênes and Jérôme Genest, "Frequency-noise removal and on-line calibration for accurate frequency comb interference spectroscopy of acetylene," Appl. Opt. 53, 731-735 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999). [CrossRef]
  2. S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability less than or equal to 6.3×10−16 in 1  s,” Opt. Lett. 27, 58–60 (2002). [CrossRef]
  3. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008). [CrossRef]
  4. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009). [CrossRef]
  5. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008). [CrossRef]
  6. M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008). [CrossRef]
  7. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012). [CrossRef]
  8. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011). [CrossRef]
  9. K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012). [CrossRef]
  10. K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013). [CrossRef]
  11. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003). [CrossRef]
  12. P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008). [CrossRef]
  13. J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010). [CrossRef]
  14. P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008). [CrossRef]
  15. J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973). [CrossRef]
  16. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15  bits of resolution,” Opt. Lett. 34, 2153–2155 (2009). [CrossRef]
  17. A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004). [CrossRef]
  18. M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012). [CrossRef]
  19. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000). [CrossRef]
  20. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited