OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: 764–768

Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics

Long Xu, Hua Zhao, Caixia Xu, Siqi Zhang, Yingyin K. Zou, and Jingwen Zhang  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. 764-768 (2014)
http://dx.doi.org/10.1364/AO.53.000764


View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband optical amplification was observed and investigated in Er3+-doped electrostrictive ceramics of lanthanum-modified lead zirconate titanate under a corona atmosphere. The ceramic structure change caused by UV light, electric field, and random walks originated from the diffusive process in intrinsically disordered materials may all contribute to the optical amplification and the associated energy storage. Discussion based on optical energy storage and diffusive equations was given to explain the findings. Those experiments performed made it possible to study random walks and optical amplification in transparent ceramics materials.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.4480) Lasers and laser optics : Optical amplifiers
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 7, 2013
Revised Manuscript: December 31, 2013
Manuscript Accepted: December 31, 2013
Published: January 31, 2014

Citation
Long Xu, Hua Zhao, Caixia Xu, Siqi Zhang, Yingyin K. Zou, and Jingwen Zhang, "Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics," Appl. Opt. 53, 764-768 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-4-764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  2. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010). [CrossRef]
  3. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004). [CrossRef]
  4. P. Barthelemy, J. Berolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453, 495–498 (2008). [CrossRef]
  5. V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Zh. Eksp. Teor. Fiz. 53, 1442–1452 (1967).
  6. V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  7. N. M. Lawandy, R. M. Malachandran, A. S. L. Gomes, and E. Sauvin, “Laser action in strongly scattering media,” Nature (London) 368, 436–438 (1994). [CrossRef]
  8. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000). [CrossRef]
  9. B. N. S. Bhaktha, N. Bchelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101, 151101 (2012). [CrossRef]
  10. J. Zhang, L. Xu, H. Wang, F. Huang, X. Sun, H. Zhao, and X. Chen, “Random lasing and weak localization of light in transparent Nd+3 doped phosphate glass,” Appl. Phys. Lett. 102, 021109 (2013). [CrossRef]
  11. S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, “Chaotic behavior of a random laser with static disorder,” Phys. Rev. A, 76, 033807 (2007). [CrossRef]
  12. M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108, 110604 (2012). [CrossRef]
  13. J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P.-L. Huang, and X. Chen, “Optical amplication in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics,” Appl. Phys. Lett. 89, 061113 (2006). [CrossRef]
  14. A. S. S. de Camargo, C. Jacinto, T. Catunda, and L. A. de O. Nunes, “Thermal lens and Auger upconversion losses’ effect on the efficiency of Nd3+-doped lead lanthanum zirconate titanate transparent ceramics,” J. Opt. Soc. Am. B 23, 2097–2106 (2006). [CrossRef]
  15. A. C. Lewandowski and S. W. S. McKeever, “Generalized description of thermally stimulated processes without the quasiequilibrium approximation,” Phys. Rev. B 43, 8163–8178 (1991). [CrossRef]
  16. Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titonate,” J. Appl. Phys. 110, 033106 (2011). [CrossRef]
  17. L. Xu, J. Zhang, S. Zhang, C. Xu, Y. K. Zou, and H. Zhao, “Electroinduced structural change- and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb,La)(Zr,Ti)O3 ceramics,” J. Appl. Phys. 113, 223101 (2013). [CrossRef]
  18. G. H. Haertling, “Electro-optic Ceramics and Devices in Electronic,” Ceramics, L. M. Levinson, eds. (Marcel Dekker, 1987).
  19. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited