OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: A159–A168

Calculation of optical and electronic properties of modeled titanium dioxide films of different densities

Marcus Turowski, Tatiana Amotchkina, Henrik Ehlers, Marco Jupé, and Detlev Ristau  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. A159-A168 (2014)
http://dx.doi.org/10.1364/AO.53.00A159


View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electronic and optical properties of TiO2 atomic structures representing simulated thin films have been investigated using density functional theory. Suitable model parameters and system sizes have been identified in advance by validation of the results with experimental data. Dependencies of the electronic band gap and the refractive index have been calculated as a function of film density. The results of the performed calculations have been compared to characterized optical properties of titania single layers deposited using different coating techniques. The modeled dependencies are consistent with experimental observations, and absolute magnitudes of simulated values are in agreement with measured optical data.

© 2013 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(310.6805) Thin films : Theory and design

History
Original Manuscript: September 4, 2013
Manuscript Accepted: October 23, 2013
Published: December 16, 2013

Citation
Marcus Turowski, Tatiana Amotchkina, Henrik Ehlers, Marco Jupé, and Detlev Ristau, "Calculation of optical and electronic properties of modeled titanium dioxide films of different densities," Appl. Opt. 53, A159-A168 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-4-A159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011). [CrossRef]
  2. O. Stenzel, S. Wilbrandt, N. Kaiser, C. Schmitz, M. Turowski, D. Ristau, P. Awakowicz, R. P. Brinkmann, T. Musch, I. Rolfes, H. Steffen, R. Foest, A. Ohl, T. Köhler, G. Dolgonos, and T. Frauenheim, “Plasma and optical thin film technologies,” Proc. SPIE 8168, 81680L (2011). [CrossRef]
  3. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings I: theoretical description,” Appl. Opt. 31, 3821–3835 (1992). [CrossRef]
  4. N. Kaiser and H. K. Pulker, eds., Optical Interference Coatings, Vol. 88 of Springer Series in Optical Sciences (Springer, 2003).
  5. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000). [CrossRef]
  6. B. Zhao, J. Zhou, and L. Rong, “Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates,” Trans. Nonferrous Met. Soc. China 20, 1429–1433 (2010). [CrossRef]
  7. T. Köhler, M. Turowski, H. Ehlers, M. Landmann, D. Ristau, and T. Frauenheim, “Computational approach for structure design and prediction of optical properties in amorphous TiO2 thin-film coatings,” J. Phys. D 46, 325302 (2013). [CrossRef]
  8. V. Georgieva, I. T. Todorov, and A. Bogaerts, “Molecular dynamics simulation of oxide thin film growth: Importance of the inter-atomic interaction potential,” Chem. Phys. Lett. 485, 315–319 (2010). [CrossRef]
  9. M. Saraiva, V. Georgieva, S. Mahieu, K. Van Aeken, A. Bogaerts, and D. Depla, “Compositional effects on the growth of Mg(M)O films,” J. Appl. Phys. 107, 034902 (2010). [CrossRef]
  10. V. Georgieva, M. Saraiva, N. Jehanathan, O. I. Lebelev, D. Depla, and A. Bogaerts, “Sputter-deposited Mg–Al–O thin films: linking molecular dynamics simulations to experiments,” J. Phys. D 42, 065107 (2009). [CrossRef]
  11. M. Turowski, H. Ehlers, K. Heinrich, and D. Ristau, “Modeling of Al2O3 thin film growth in modern ion coating processes,” Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2013), paper MA.8.
  12. M. Landmann, T. Köhler, S. Köppen, E. Rauls, T. Frauenheim, and W. G. Schmidt, “Fingerprints of order and disorder in the electronic and optical properties of crystalline and amorphous TiO2,” Phys. Rev. B 86, 064201 (2012). [CrossRef]
  13. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15 (1996). [CrossRef]
  14. P. Hohenberg, “Inhomogeneous Electron Gas,” Phys. Rev. 136, B864–B871 (1964). [CrossRef]
  15. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965). [CrossRef]
  16. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994). [CrossRef]
  17. J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118, 8207–8216 (2003). [CrossRef]
  18. J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)],” J. Chem. Phys. 124, 219906 (2006). [CrossRef]
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996). [CrossRef]
  20. M. Landmann, E. Rauls, and W. G. Schmidt, “The electronic structure and optical response of rutile, anatase and brookite TiO2,” J. Phys. Condens. Matter 24, 195503 (2012). [CrossRef]
  21. B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci. 47, 7515–7521 (2012). [CrossRef]
  22. H. Hellmann, “A new approximation method in the problem of many electrons,” J. Chem. Phys. 3, 61 (1935). [CrossRef]
  23. J. Pack and H. Monkhorst, “Special points for Brillouin-zone integrations,” Phys. Rev. B 16, 1748–1749 (1977). [CrossRef]
  24. H. Ehrenreich and M. Cohen, “Self-consistent field approach to the many-electron problem,” Phys. Rev. 115, 786–790 (1959). [CrossRef]
  25. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B 73, 045112 (2006). [CrossRef]
  26. T. Amotchkina, M. Trubetskov, A. Tikhonravov, I. Angelov, and V. Pervak, “Reliable characterization of e-beam evaporated TiO2 films,” Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2013), paper FA.6.
  27. M. Vergöhl, O. Werner, and S. Bruns, “New developments in magnetron sputter processes for precision optics,” Proc. SPIE 7101, 71010B (2008). [CrossRef]
  28. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009). [CrossRef]
  29. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited