OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: A259–A269

Characterization of optical coatings using a multisource table-top scatterometer

Alexander von Finck, Tobias Herffurth, Sven Schröder, Angela Duparré, and Stefan Sinzinger  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. A259-A269 (2014)
http://dx.doi.org/10.1364/AO.53.00A259


View Full Text Article

Enhanced HTML    Acrobat PDF (1331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light scattering measurement and analysis is a powerful tool for the characterization of optical and nonoptical surfaces. To enable a more comprehensive postmeasurement characterization, three visible laser sources were recently implemented in a highly sensitive table-top scatterometer with 3D spherical detection capability. Based on wavelength scaling, the instrument is utilized to characterize thin-film coatings and their substrates with respect to surface roughness, roughness growth, and contamination. Topographic measurement techniques are used to verify the results. The spectral sensitivity to contamination (scatter loss) is demonstrated to be significantly different for single surfaces and interference coatings. In addition, power losses of a highly reflective coating are analyzed.

© 2014 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(240.0310) Optics at surfaces : Thin films
(290.0290) Scattering : Scattering
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: September 9, 2013
Revised Manuscript: November 19, 2013
Manuscript Accepted: November 20, 2013
Published: January 15, 2014

Citation
Alexander von Finck, Tobias Herffurth, Sven Schröder, Angela Duparré, and Stefan Sinzinger, "Characterization of optical coatings using a multisource table-top scatterometer," Appl. Opt. 53, A259-A269 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-4-A259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50, C164–C171 (2011). [CrossRef]
  2. F. D. Orazio, W. K. Stockwell, and R. M. Silva, “Instrumentation for a variable angle scatterometer (VAS),” Proc. SPIE 362, 165–171 (1983). [CrossRef]
  3. D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).
  4. T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70, 3688–3695 (1999). [CrossRef]
  5. M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153 (2011). [CrossRef]
  6. S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005). [CrossRef]
  7. S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010). [CrossRef]
  8. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993). [CrossRef]
  9. A. von Finck, M. Hauptvogel, and A. Duparré, “Instrument for close-to-process light scatter measurements of thin film coatings and substrates,” Appl. Opt. 50, C321–C328 (2011). [CrossRef]
  10. T. Herffurth, S. Schröder, M. Trost, A. Duparré, and A. Tünnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52, 3279–3287 (2013). [CrossRef]
  11. J. C. Stover, Optical Scattering: Measurement and Analysis, 3rd ed. (SPIE, 2012).
  12. A. Duparré, “Scattering from surfaces and thin films,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, 2004), pp. 314–321.
  13. “Optics and optical instruments—test methods for radiation scattered by optical components,” , 2002.
  14. “Standard practice for goniometric optical scatter measurements,” (American Society for Testing and Materials, 2011).
  15. R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattsson, “Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,” Appl. Opt. 31, 1426–1435 (1992). [CrossRef]
  16. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002). [CrossRef]
  17. C. Deumie, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996). [CrossRef]
  18. C. Ruppe and A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996). [CrossRef]
  19. E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 16, 360–374 (1977). [CrossRef]
  20. E. L. Church and P. Takacs, “Surface scattering,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, pp. 7.1–7.16.
  21. J. Elson and J. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208 (1995). [CrossRef]
  22. J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, and T. F. Schiff, “Comparison of wavelength scaling data to experiment,” Proc. SPIE 967, 44–49 (1988). [CrossRef]
  23. J. Stover, M. Bernt, D. E. McGary, and J. Rifkin, “An investigation of anomalous scatter from beryllium mirrors,” Proc. SPIE 1165, 100 (1989). [CrossRef]
  24. J. Elson, J. M. Bennett, and J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993). [CrossRef]
  25. E. L. Church and P. Takacs, “Prediction of mirror performance from laboratory measurements,” Proc. SPIE 1160, 323–3361989). [CrossRef]
  26. P. Dumas, B. Bouffakhreddine, C. Amra, O. Vatel, E. Andre, R. Galindo, and F. Salvan, “Quantitative micro-roughness analysis down to the nanometer scale,” Europhys. Lett. 22, 717–722 (1993). [CrossRef]
  27. E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988). [CrossRef]
  28. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980). [CrossRef]
  29. P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981). [CrossRef]
  30. A. Duparré and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt. 32, 5475–5480 (1993). [CrossRef]
  31. C. Amra, “Light scattering from multilayer optics. I. Tools of investigation,” J. Opt. Soc. Am. A 11, 197–210 (1994). [CrossRef]
  32. C. Amra, J. H. Apfel, and E. Pelletier, “Role of interface correlation in light scattering by a multilayer,” Appl. Opt. 31, 3134–3151 (1992). [CrossRef]
  33. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219 (1983). [CrossRef]
  34. C. Asmail, J. Hsia, A. Parr, and J. Hoeft, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements,” Appl. Opt. 33, 6084–6091 (1994). [CrossRef]
  35. C. Asmail, A. Parr, and J. Hsia, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements: corrigendum,” Appl. Opt. 38, 6027–6028 (1999). [CrossRef]
  36. A. von Finck, “Table top system for angle resolved light scattering measurement,” Ph.D. thesis (Technische Universität Ilmenau, 2013).
  37. Y. Wang and W. Wolfe, “Scattering from microrough surfaces: comparison of theory and experiment,” J. Opt. Soc. Am. 73, 1596–1602 (1983). [CrossRef]
  38. J. C. Stover, M. Bernt, E. L. Church, and P. Takacs, “Measurement and analysis of scatter from silicon wafers,” Proc. SPIE 2260, 182–191 (1994). [CrossRef]
  39. J. Elson, “Theory of light scattering from a rough surface with an inhomogeneous dielectric permittivity,” Phys. Rev. B 30, 5460–5480 (1984). [CrossRef]
  40. C. Amra, “Light scattering from multilayer optics. II. Application to experiment,” J. Opt. Soc. Am. A 11, 211–226 (1994). [CrossRef]
  41. S. Kassam, A. Duparré, K. Hehl, P. Bussemer, and J. Neubert, “Light scattering from the volume of optical thin films: theory and experiment,” Appl. Opt. 31, 1304–1313 (1992). [CrossRef]
  42. Spectroscopic layer thickness analysis performed by Olaf Stenzel, Fraunhofer IOF, Jena.
  43. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009). [CrossRef]
  44. D. Rönnow, “Interface roughness statistics of thin films from angle-resolved light scattering at three wavelengths,” Opt. Eng. 37, 696–704 (1998). [CrossRef]
  45. S. Schröder, D. Unglaub, M. Trost, X. Cheng, J. Zhang, and A. Duparré, “Spectral angle resolved scattering of thin film coatings,” Appl. Opt. 53, A35–A41 (2014).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited