OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: A392–A398

Laser-induced damage in composites of scandium, hafnium, aluminum oxides with silicon oxide in the infrared

Xinghai Fu, Mireille Commandré, Laurent Gallais, Mathias Mende, Henrik Ehlers, and Detlev Ristau  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. A392-A398 (2014)
http://dx.doi.org/10.1364/AO.53.00A392


View Full Text Article

Enhanced HTML    Acrobat PDF (1092 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The laser-induced damage of mixtures of Sc2O3, HfO2, Al2O3 with SiO2 has been characterized in the infrared for both nanosecond and subpicosecond pulses. Laser-induced damage thresholds (LIDTs) are reported and discussed versus band gap for different compositions. The distributions versus fluence of nanosecond damage precursor densities are extracted fitting damage probability curves. Two models are used: first, a statistical approach, i.e., direct calculation of damage precursor density from damage probability, and second a thermal model based on absorption of initiator. The results show a good agreement. The nature, shape, and size of these precursors are discussed. The critical temperature in the thermal model is dependent on the band gap energy.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.0310) Thin films : Thin films
(320.4240) Ultrafast optics : Nanosecond phenomena

History
Original Manuscript: October 2, 2013
Revised Manuscript: December 8, 2013
Manuscript Accepted: December 8, 2013
Published: January 24, 2014

Citation
Xinghai Fu, Mireille Commandré, Laurent Gallais, Mathias Mende, Henrik Ehlers, and Detlev Ristau, "Laser-induced damage in composites of scandium, hafnium, aluminum oxides with silicon oxide in the infrared," Appl. Opt. 53, A392-A398 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-4-A392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Jensen and D. Ristau, “Coatings of oxide composites,” Proc. SPIE 8530, 853013 (2012). [CrossRef]
  2. C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012). [CrossRef]
  3. M. Commandré, J.-Y. Natoli, and L. Gallais, “Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials,” Eur. Phys. J. Special Topics 153, 59–64 (2008). [CrossRef]
  4. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011). [CrossRef]
  5. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351  nm, 3  ns laser pulses at high fluences (20–150  J/cm2),” Opt. Express 20, 11561 (2012). [CrossRef]
  6. X. Fu, A. Melnikaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Investigation of the distribution of laser damage precursors at 1064  nm, 12  ns on Niobia-Silica and Zirconia-Silica mixtures,” Opt. Express 20, 26089–26098 (2012). [CrossRef]
  7. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007). [CrossRef]
  8. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).
  9. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008). [CrossRef]
  10. M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52, 1368–1376 (2013). [CrossRef]
  11. M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).
  12. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012). [CrossRef]
  13. L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009). [CrossRef]
  14. X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012). [CrossRef]
  15. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004). [CrossRef]
  16. G. Demésy, L. Gallais, and M. Commandré, “Tridimensional multiphysics model for the study of photo-induced thermal effects in arbitrary nano-structures,” J. Eur. Opt. Soc. 6, 11037 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited