OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 5 — Feb. 10, 2014
  • pp: 1007–1019

Spectral and temporal properties of optical signals with multiple sinusoidal phase modulations

C. Dorrer  »View Author Affiliations

Applied Optics, Vol. 53, Issue 5, pp. 1007-1019 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (970 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical signals generated by multiple sinusoidal temporal phase modulations (multi-FMs) applied to a monochromatic field are studied from the viewpoint of their optical spectrum and temporal modulations arising from spectral impairments. Statistical analysis based on the central limit theorem shows that the signals’ optical spectrum converges to a normal distribution as the number of modulations increases, allowing one to predict the frequency range containing a given fraction of the total energy with the associated cumulative density function. The conversion of frequency modulation to amplitude modulation is analyzed and simulated for arbitrary multi-FM signals. These developments are of theoretical and practical importance for high-energy laser systems, where optical pulses are phase modulated in the front end to smooth out the on-target beam profile and prevent potentially catastrophic damage to optical components.

© 2014 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(060.5060) Fiber optics and optical communications : Phase modulation
(350.2660) Other areas of optics : Fusion
(140.3518) Lasers and laser optics : Lasers, frequency modulated
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 23, 2013
Manuscript Accepted: November 25, 2013
Published: February 10, 2014

C. Dorrer, "Spectral and temporal properties of optical signals with multiple sinusoidal phase modulations," Appl. Opt. 53, 1007-1019 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004). [CrossRef]
  2. R. L. McCrory, D. D. Meyerhofer, R. Betti, R. S. Craxton, J. A. Delettrez, D. H. Edgell, V. Y. Glebov, V. N. Goncharov, D. R. Harding, D. W. Jacobs-Perkins, J. P. Knauer, F. J. Marshall, P. W. McKenty, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, R. W. Short, S. Skupsky, V. A. Smalyuk, J. M. Soures, C. Stoeckl, B. Yaakobi, D. Shvarts, J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Séguin, “Progress in direct-drive inertial confinement fusion research,” Phys. Plasmas 15, 055503 (2008). [CrossRef]
  3. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007). [CrossRef]
  4. N. Fleurot, C. Cavailler, and J. L. Bourgade, “The Laser Mégajoule (LMJ) project dedicated to inertial confinement fusion: development and construction status,” Fusion Eng. Des. 74, 147–154 (2005). [CrossRef]
  5. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402–2411 (1989). [CrossRef]
  6. P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, “NIF injection laser system,” in Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, M. A. Lane and C. R. Wuest, eds. (SPIE, 2004), Vol. 5341, pp. 146–155.
  7. S. Hocquet, D. Penninckx, E. Bordenave, C. Gouédard, and Y. Jaouën, “FM-to-AM conversion in high-power lasers,” Appl. Opt. 47, 3338–3349 (2008). [CrossRef]
  8. J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994). [CrossRef]
  9. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989). [CrossRef]
  10. J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997). [CrossRef]
  11. “Multiple-FM smoothing by spectral dispersion—an augmented laser speckle smoothing scheme,” LLE Review Quarterly Report, Laboratory for Laser Energetics, LLE Document No.  (University of Rochester, Rochester, NY, 2008), Vol. 114, pp. 73–80.
  12. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Distributed phase plates for super-Gaussian focal-plane irradiance profiles,” Opt. Lett. 20, 764–766 (1995). [CrossRef]
  13. T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive-ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012). [CrossRef]
  14. J. H. Kelly, A. Shvydky, J. A. Marozas, M. J. Guardalben, B. E. Kruschwitz, L. J. Waxer, C. Dorrer, E. Hill, A. V. Okishev, and J.-M. Di Nicola, “Simulations of the propagation of multiple-FM smoothing by spectral dispersion on OMEGA EP,” in High Power Lasers for Fusion Research II, A. A. S. Awwal, ed. (SPIE, 2013), Vol. 8602, paper 86020D.
  15. B. E. Kruschwitz, J. H. Kelly, C. Dorrer, A. V. Okishev, L. J. Waxer, G. Balonek, I. A. Begishev, W. Bittle, A. Consentino, R. Cuffney, E. Hill, J. A. Marozas, M. Moore, R. G. Roides, and J. D. Zuegel, “Commissioning of a multiple-frequency modulation smoothing by spectral dispersion demonstration system on OMEGA EP,” in High Power Lasers for Fusion Research II, A. A. S. Awwal, ed. (SPIE, 2013), Vol. 8602, paper 86020E.
  16. C. Dorrer, R. Roides, R. Cuffney, A. V. Okishev, W. A. Bittle, G. Balonek, A. Consentino, E. Hill, and J. D. Zuegel, “Fiber front end with multiple phase modulations and high-bandwidth pulse shaping for high-energy laser-beam smoothing,” IEEE J. Sel. Top. Quantum Electron. 19, 3500112 (2013). [CrossRef]
  17. J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “Issue of FM to AM conversion on the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed. (SPIE, 1999), Vol. 3492, pp. 51–61.
  18. H. Cao, X. Lu, L. Li, X. Yin, W. Ma, J. Zhu, and D. Fan, “Compensation of FM-to-AM conversion in high-power lasers,” Appl. Opt. 50, 3609–3614 (2011). [CrossRef]
  19. S. Hocquet, G. Lacroix, and D. Penninckx, “Compensation of frequency modulation to amplitude modulation conversion in frequency conversion systems,” Appl. Opt. 48, 2515–2521 (2009). [CrossRef]
  20. L. W. Couch, Digital and Analog Communication Systems, 8th ed. (Prentice-Hall, 2012).
  21. S. Vidal, J. Luce, and D. Penninckx, “Compensation of phase-to-amplitude modulation conversion in a complete frequency conversion system with an all-fiber system,” Opt. Lett. 36, 3494–3496 (2011). [CrossRef]
  22. D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, “Signal propagation over polarization-maintaining fibers: problem and solutions,” J. Lightwave Technol. 24, 4197–4207 (2006). [CrossRef]
  23. S. Hocquet, D. Penninckx, J.-F. Gleyze, C. Gouédard, and Y. Jaouën, “Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion,” Appl. Opt. 49, 1104–1115 (2010). [CrossRef]
  24. J. W. Goodman, Statistical Optics (Wiley, 2000).
  25. D. Collett, Modelling Binary Data, 2nd ed. (Chapman & Hall/CRC, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited