OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 5 — Feb. 10, 2014
  • pp: 841–849

Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators

Jian Liu, F. A. Torres, Yubo Ma, C. Zhao, L. Ju, D. G. Blair, S. Chao, I. Roch-Jeune, R. Flaminio, C. Michel, and K.-Y. Liu  »View Author Affiliations

Applied Optics, Vol. 53, Issue 5, pp. 841-849 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies 400kHz and quality-factors 7.5×105) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×104 with 30 mW of input power.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Nonlinear Optics

Original Manuscript: October 23, 2013
Manuscript Accepted: December 11, 2013
Published: February 5, 2014

Jian Liu, F. A. Torres, Yubo Ma, C. Zhao, L. Ju, D. G. Blair, S. Chao, I. Roch-Jeune, R. Flaminio, C. Michel, and K.-Y. Liu, "Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators," Appl. Opt. 53, 841-849 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007). [CrossRef]
  2. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 33901 (2005). [CrossRef]
  3. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006). [CrossRef]
  4. A. Schliesser, P. Delaye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006). [CrossRef]
  5. C. Zhao, L. Ju, Y. Fan, S. Gras, B. J. J. Slagmolen, H. Miao, P. Barriga, D. G. Blair, D. J. Hosken, A. F. Brooks, P. J. Veitch, D. Mudge, and J. Munch, “Observation of three-mode parametric interactions in long optical cavities,” Phys. Rev. A 78, 023807 (2008). [CrossRef]
  6. J. Miller, M. Evans, L. Barsotti, P. Fritschel, M. MacInnis, R. Mittleman, B. Shapiro, J. Soto, and C. Torrie, “Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators,” Phys. Lett. A 375, 788–794 (2011). [CrossRef]
  7. S. P. Vyatchanin, “Parametric oscillatory instability in laser gravitational antennas,” Phys. Usp. 55, 302–305 (2012).
  8. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012). [CrossRef]
  9. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006). [CrossRef]
  10. J. M. Dobrindt and T. J. Kippenberg, “Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,” Phys. Rev. Lett. 104, 033901 (2010). [CrossRef]
  11. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012). [CrossRef]
  12. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef]
  13. P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999). [CrossRef]
  14. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010). [CrossRef]
  15. J. B. Khurgin, “Viewpoint: phonon lasers gain a sound foundation,” Physics 3, 16 (2010). [CrossRef]
  16. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef]
  17. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry–Perot interferometer,” Phys. Lett. A 287, 331–338 (2001). [CrossRef]
  18. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled LIGO interferometer,” Phys. Lett. A 305, 111–124 (2002). [CrossRef]
  19. G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010). [CrossRef]
  20. C. Zhao, L. Ju, J. Degallaix, S. Gras, and D. G. Blair, “Parametric instabilities and their control in advanced interferometer gravitational-wave detectors,” Phys. Rev. Lett. 94, 121102 (2005). [CrossRef]
  21. L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser interferometer gravitational wave detectors,” Phys. Lett. A 354, 360–365 (2006). [CrossRef]
  22. M. Evans, L. Barsotti, and P. Fritschel, “A general approach to optomechanical parametric instabilities,” Phys. Lett. A 374, 665–671 (2010). [CrossRef]
  23. C. Blair, S. Susmithan, C. Zhao, F. Qi, L. Ju, and D. Blair, “Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry–Pérot cavity,” Phys. Lett. A 377, 1970–1973 (2013). [CrossRef]
  24. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
  25. X. Chen, C. Zhao, L. Ju, S. Danilishin, D. Blair, H. Wang, and S. P. Vyatchanin, “Observation of three-mode parametric instability,” arXiv:1303.4561 (2013).
  26. C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, and D. G. Blair, “Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments,” Phys. Rev. Lett. 102, 243902 (2009). [CrossRef]
  27. S. R. Mallinson, “Fabry–Perot interferometer,” U.S. Patent4,825,262 (25April1989).
  28. F. A. Torres, P. Meng, L. Ju, C. Zhao, D. G. Blair, K.-Y. Liu, S. Chao, M. Martyniuk, I. Roch-Jeune, R. Flaminio, and C. Michel, “High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers,” J. Appl. Phys. 114, 014506 (2013). [CrossRef]
  29. G. M. Harry, M. R. Abernathy, A. E. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfield, C. Nwabugwu, A. Villar, D. R. M. Crooks, G. Cagnoli, J. Hough, C. R. How, I. MacLaren, P. Murray, S. Reid, S. Rowan, P. H. Sneddon, M. M. Fejer, R. Route, S. D. Penn, P. Ganau, J.-M. Mackowski, C. Michel, L. Pinard, and A. Remillieux, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Grav. 24, 405–415 (2007). [CrossRef]
  30. D. T. Wei, “Ion beam interference coating for ultralow optical loss,” Appl. Opt. 28, 2813–2816 (1989). [CrossRef]
  31. J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010). [CrossRef]
  32. Y. Mita, M. Kubota, T. Harada, F. Marty, B. Saadany, T. Bourouina, and T. Shibata, “Contour lithography methods for drie fabrication of nanometre–millimetre-scale coexisting microsystems,” J. Micromech. Microeng. 16, S135–S141 (2006). [CrossRef]
  33. J. Greuters and N. H. Rizvi, “UV laser micromachining of silicon, indium phosphide and lithium niobate for telecommunications applications,” in OPTO Ireland (International Society for Optics and Photonics, 2003), pp 479–486.
  34. R. Nawrodt, C. Schwarz, S. Kroker, I. W. Martin, R. Bassiri, F. Brückner, L. Cunningham, G. D. Hammond, D. Heinert, J. Hough, T. Käsebier, E.-B. Kley, R. Neubert, S. Reid, S. Rowan, P. Seidel, and A. Tünnermann, “Investigation of mechanical losses of thin silicon flexures at low temperatures,” Class. Quantum Grav. 30, 115008 (2013). [CrossRef]
  35. R. Nawrodt, A. Zimmer, T. Koettig, C. Schwarz, D. Heinert, M. Hudl, R. Neubert, M. Thürk, S. Nietzsche, W. Vodel, P. Seidel, and A. Tünnermann, “High mechanical Q-factor measurements on silicon bulk samples,” J. Phys. 122, 012008 (2008).
  36. S. A. Chandorkar, R. N. Candler, A. Duwel, R. Melamud, M. Agarwal, K. E. Goodson, and T. W. Kenny, “Multimode thermoelastic dissipation,” J. Appl. Phys. 105, 043505 (2009). [CrossRef]
  37. J. A. Arnaud, “Degenerate optical cavities,” Appl. Opt. 8, 189–195 (1969). [CrossRef]
  38. B. Chalopin, A. Chiummo, C. Fabre, A. Matre, and N. Treps, “Frequency doubling of low power images using a self-imaging cavity,” Opt. Express 18, 8033–8042 (2010). [CrossRef]
  39. H. Miao, C. Zhao, L. Ju, S. Gras, P. Barriga, Z. Zhang, and D. G. Blair, “Three-mode optoacoustic parametric interactions with a coupled cavity,” Phys. Rev. A 78, 063809 (2008). [CrossRef]
  40. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  41. W. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Crest, 2007).
  42. S. Reid, G. Cagnoli, D. R. M. Crooks, J. Hough, P. Murray, S. Rowan, M. M. Fejer, R. Route, and S. Zappe, “Mechanical dissipation in silicon flexures,” Phys. Lett. A 351, 205–211 (2006). [CrossRef]
  43. U. Gysin, S. Rast, P. Ruff, E. Meyer, D. W. Lee, P. Vettiger, and C. Gerber, “Temperature dependence of the force sensitivity of silicon cantilevers,” Phys. Rev. B 69, 045403 (2004). [CrossRef]
  44. K. Uhlig, “Dry dilution refrigerator with high cooling power,” AIP Conf. Proc. 985, 1287 (2008). [CrossRef]
  45. E. Serra, A. Borrielli, F. S. Cataliotti, F. Marin, F. Marino, A. Pontin, G. A. Prodi, and M. Bonaldi, “An ultra-low dissipation micro-oscillator for quantum opto-mechanics,” Phys. Rev. A 86, 051801 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited