OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 5 — Feb. 10, 2014
  • pp: 850–860

Optical properties and laser damage threshold of HfO2–SiO2 mixed composite thin films

Shuvendu Jena, Raj Bahadur Tokas, Nitin M. Kamble, Sudhakar Thakur, and Naba Kishore Sahoo  »View Author Affiliations

Applied Optics, Vol. 53, Issue 5, pp. 850-860 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



HfO2SiO2 mixed composite thin films have been deposited on fused silica substrate by co-evaporation of HfO2 and SiO2 through the reactive electron-beam evaporation technique. The composition-dependent refractive index and the absorption coefficient have been analyzed using different effective medium approximation (EMA) models in order to evaluate the suitability of these models for such mixed composite thin films. The discrepancies between experimentally determined and EMA-computed values are explained through microstructural and morphological evolutions observed in these mixed composite films. Finally, the dependence of the laser damage threshold as a function of silica content has been investigated, and the improved laser-induced damage threshold for films having more than 80% silica content has been explained through the defect-assisted multiphoton ionization process.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(240.5770) Optics at surfaces : Roughness
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: September 12, 2013
Revised Manuscript: November 21, 2013
Manuscript Accepted: December 13, 2013
Published: February 5, 2014

Shuvendu Jena, Raj Bahadur Tokas, Nitin M. Kamble, Sudhakar Thakur, and Naba Kishore Sahoo, "Optical properties and laser damage threshold of HfO2–SiO2 mixed composite thin films," Appl. Opt. 53, 850-860 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996). [CrossRef]
  2. L. Yang, Y. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2–TiO2 thin films: crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20, 3141–3149 (2005). [CrossRef]
  3. N. K. Sahoo, A. Thakur, R. B. Tokas, and N. M. Kamble, “Refractive-index tailoring and morphological evolutions in Gd2O3–SiO2 and ZrO2–SiO2 composite thin films,” Appl. Phys. A 89, 711–719 (2007). [CrossRef]
  4. D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1-x O2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008). [CrossRef]
  5. D. Rademacher, G. Brauer, B. Fritz, and M. Verghol, “Optical properties of silicon titanium oxide mixtures prepared by metallic mode reactive sputtering,” Appl. Opt. 51, 8047–8051 (2012). [CrossRef]
  6. V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5-SiO2 mixtures in thin films,” Surf. Coat. Technol. 206, 3650–3657 (2012). [CrossRef]
  7. B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28, 2800–2805 (1989). [CrossRef]
  8. R. Vernhes, O. Zabedia, J. E. Klemberg-Sapieha, and L. Martinu, “Single-material inhomogeneous optical filters based on microstructural gradients in plasma-deposited silicon nitride,” Appl. Opt. 43, 97–103 (2004). [CrossRef]
  9. J. Weber, H. Bartzch, and P. Frach, “Sputter deposition of silicon oxynitride gradient and multilayer coatings,” Appl. Opt. 47, C288–C292 (2008). [CrossRef]
  10. L. Gao and Z. Li, “Effective medium approximation for two-component nonlinear composites with shape distribution,” J. Phys. Condens. Matter 15, 4397–4409 (2003). [CrossRef]
  11. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. 416, 636–664 (1935). [CrossRef]
  12. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904). [CrossRef]
  13. L. Lorentz, “Über die Refractionsconstante,” Ann. Phys. 247, 70–103 (1880). [CrossRef]
  14. C.-C. Lee and C.-J. Tang, “TiO2–Ta2O5 composite thin films deposited by radio frequency ion-beam sputtering,” Appl. Opt. 45, 9125–9131 (2006). [CrossRef]
  15. H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31, 401–406 (1965). [CrossRef]
  16. N. K. Sahoo, S. Thakur, R. B. Tokas, and N. M. Kamble, “Relative performances of effective medium formulations in interpreting specific composite thin films optical properties,” Appl. Surf. Sci. 253, 6787–6799 (2007). [CrossRef]
  17. M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52, 1368–1376 (2013). [CrossRef]
  18. J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5-SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008). [CrossRef]
  19. B. Mangote, L. Gallais, M. Commandre, M. Mende, L. Jensen, H. Ehlers, M. Jupe, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kicas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012). [CrossRef]
  20. O. Stenzel, S. Wilbrandt, M. Schurmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergohl, M. Stolze, M. Held, H. Neiderwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schafer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkramer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tunnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50, C69–C74 (2011). [CrossRef]
  21. N. M. Kamble, R. B. Tokas, S. Thakur, and N. K. Sahoo, “Compositional analysis of HfO2: SiO2 composite thin films and its correlation with refractive index,” AIP Conf. Proc. 1451, 316–318 (2012).
  22. M. Mulato, I. Chambouleyron, E. G. Birgin, and J. M. Martinez, “Determination of thickness and optical constants of amorphous silicon films from transmission data,” Appl. Phys. Lett. 77, 2133–2135 (2000). [CrossRef]
  23. J. A. Dobrowolski, F. C. Ho, and A. Waldrof, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983). [CrossRef]
  24. S. Jena, R. B. Tokas, N. M. Kamble, S. Thakur, D. Bhattacharya, and N. K. Sahoo, “Investigation of elastic and optical properties of electron beam evaporated ZrO2-MgO composite thin films,” Thin Solid Films 537, 163–170 (2013). [CrossRef]
  25. M. Cesaria, A. P. Caricato, and M. Martino, “Realistic absorption coefficient of ultrathin films,” J. Opt. 14, 105701 (2012). [CrossRef]
  26. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, 1974).
  27. A. Gibaud and S. Hazra, “X-ray reflectivity and diffuse scattering,” Curr. Sci. 78, 1467–1477 (2000).
  28. D. Ristau, M. Jupe, and K. Starke, “Laser damage thresholds of optical coatings,” Thin Solid Films 518, 1607–1613 (2009). [CrossRef]
  29. R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996). [CrossRef]
  30. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982). [CrossRef]
  31. H. Liu, S. Chen, P. Ma, Y. Pu, Z. Qiao, Z. Zhang, Y. Wei, and Z. Liu, “Ion beam sputtering mixture films with tailored refractive indices,” Opt. Laser Technol. 55, 21–25 (2014). [CrossRef]
  32. N. C. Das, N. K. Sahoo, D. Bhattacharyya, S. Thakur, N. M. Kamble, D. Nanda, S. Hazra, J. K. Bal, J. F. Lee, Y. L. Tai, and C. A. Hsieh, “Correlation between local structure and refractive index of e-beam evaporated (HfO2-SiO2) composite thin films,” J. Appl. Phys. 108, 023515 (2010). [CrossRef]
  33. X. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering,” Thin Solid Films 338, 105–109 (1999). [CrossRef]
  34. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000). [CrossRef]
  35. C. V. Ramana, R. S. Vemuri, I. Fernadez, and A. L. Campbell, “Size-effects on the optical properties of zirconium oxide thin films,” Appl. Phys. Lett. 95, 231905 (2009). [CrossRef]
  36. G.-L. Tian, H.-B. He, and J.-D. Shao, “Effect of microstructure of TiO2 thin films on optical band gap energy,” Chin. Phys. Lett. 22, 1787–1789 (2005). [CrossRef]
  37. J. Sabcho-Parramon and V. Janicki, “Effective medium theories for composite materials in spectral ranges of weak absorption: the case of Nb2O5-SiO2 mixtures,” J. Phys. D 41, 215304 (2008). [CrossRef]
  38. M. Alvisi, M. D. Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000). [CrossRef]
  39. L. J. Shaw-Klein, S. J. Burns, and S. D. Jacobs, “Model for laser damage dependence on thin-film morphology,” Appl. Opt. 32, 3925–3929 (1993).
  40. C. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci. 74, 3396–3403 (1999). [CrossRef]
  41. S. M. S. Murshed, “Determination of effective specific heat of nanofluids,” J. Exp. Nanosci. 6, 539–546 (2011). [CrossRef]
  42. J. Franc, N. Morgado, R. Flaminio, R. Nawrodt, I. Martin, L. Cunningham, A. Cumming, S. Rowan, and J. Hough, “Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature,” arXiv:0912.0107v1 (2009).
  43. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996). [CrossRef]
  44. L. Jiang and H. L. Tsai, “Femtosecond lasers ablation: challenges and opportunities,” presented at the NSF Workshop on Research Needs in Thermal Aspects of Material Removal, Stillwater, Oklahoma, 10–12 June, 2003.
  45. T. E. Itina, M. Mamatkulov, and M. Sentis, “Nonlinear fluence dependencies in femtosecond laser ablation of metals and dielectric materials,” Opt. Eng. 44, 051109 (2005). [CrossRef]
  46. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985). [CrossRef]
  47. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).
  48. C. Wei, H. He, H. Qi, K. Yi, and Z. Fan, “Laser-induced damage of multilayer oxide coatings at 248 nm,” J. Korean Phys. Soc. 58, 1021–1025 (2011). [CrossRef]
  49. X. Fu, A. Melnikaitis, L. Gallais, S. Kiacas, R. Drazdys, V. Sirutkaitis, and M. Commandre, “Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on niobia-silica and zirconia-silica mixtures,” Opt. Express 20, 26089–26098 (2012). [CrossRef]
  50. J. F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and K. I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42, L1025–L1027 (2003). [CrossRef]
  51. L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772–775 (1984). [CrossRef]
  52. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003). [CrossRef]
  53. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008). [CrossRef]
  54. L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272, 221–226 (2007). [CrossRef]
  55. L. Skuja, “Optically active oxygen-deficiency-related centres in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998). [CrossRef]
  56. W. Rudolph, L. A. Emmert, C. Rodriguez, Z. Sun, X. Zhang, Y. Xu, C. S. Menoni, P. F. Langston, E. Krous, and D. Patel, “Femtosecond to nanosecond laser damage in dielectric materials,” Proc. SPIE 8786, 878602 (2013). [CrossRef]
  57. K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62, 8584–8587 (2000). [CrossRef]
  58. H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, and M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184–189 (2005). [CrossRef]
  59. L. Gallais, H. Krol, J. Y. Natoli, M. Commandre, and M. Cathelinaud, “Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering,” Thin Solid Films 515, 3830–3836 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited