OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 5 — Feb. 10, 2014
  • pp: 907–914

Sol-gel synthesized far-red chromium-doped garnet phosphors for phosphor-conversion light-emitting diodes that meet the photomorphogenetic needs of plants

Akvilė Zabiliūtė, Skirmantė Butkutė, Artūras Žukauskas, Pranciškus Vitta, and Aivaras Kareiva  »View Author Affiliations


Applied Optics, Vol. 53, Issue 5, pp. 907-914 (2014)
http://dx.doi.org/10.1364/AO.53.000907


View Full Text Article

Enhanced HTML    Acrobat PDF (1025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the sol-gel synthesis and characterization of far-red garnet phosphors Gd3Ga5O12 (GGG:Cr), Y3Ga5O12 (YGG:Cr), Lu3Ga5O12 (LGG:Cr), and Gd3Sc2Ga3O12 (GSGG:Cr) doped with different chromium (III) concentration (3, 5, and 8 mol. %). The morphological and luminescence properties of the phosphors annealed at different temperatures (1000°C, 1300°C, 1400°C, and 1500°C) were examined using x-ray diffraction, scanning electron microscopy, photoluminescence (PL), and PL excitation (PLE) spectroscopy, and by the measurements of diffuse reflection, PL internal quantum efficiency (QE), and PL decay time. The PLE spectra of the samples were found to peak at around 450 nm depending on the host, and luminescence was observed in the region of 700–760 nm. The QE was found to strongly depend on doping concentration and calcination temperature, and the PL decay exhibited biexponential behavior. The investigated far-red garnet phosphors, in particular GGG:Cr and YGG:Cr, show a potential for use in phosphor-converted light-emitting diodes that meet the photomorphogenetic needs of plants.

© 2014 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.6060) Materials : Solgel
(230.3670) Optical devices : Light-emitting diodes
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Materials

History
Original Manuscript: June 17, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 30, 2013
Published: February 6, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Akvilė Zabiliūtė, Skirmantė Butkutė, Artūras Žukauskas, Pranciškus Vitta, and Aivaras Kareiva, "Sol-gel synthesized far-red chromium-doped garnet phosphors for phosphor-conversion light-emitting diodes that meet the photomorphogenetic needs of plants," Appl. Opt. 53, 907-914 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-5-907


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Yeh and J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175–2180 (2009).
  2. M. S. McDonald, Photobiology of Higher Plants (Wiley, 2003).
  3. S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004). [CrossRef]
  4. R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).
  5. R. C. Jao and W. Fang, “An adjustable light source for photo–phyto related research and young plant production,” Appl. Eng. Agric. 19, 601–608 (2003).
  6. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005). [CrossRef]
  7. C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120, 808–813 (1995).
  8. N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).
  9. G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997). [CrossRef]
  10. O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003). [CrossRef]
  11. H. Kajii, K. Kimpara, and Y. Ohmori, “Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process,” Thin Solid Films 518, 551–554 (2009). [CrossRef]
  12. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158, R37–R54 (2011). [CrossRef]
  13. W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC Press, 2004).
  14. L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008). [CrossRef]
  15. A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family,” Opt. Mater. 33, 247–257 (2011). [CrossRef]
  16. M. D. Seltzer, “Interpretation of the emission spectra of trivalent chromium-doped garnet crystals using Tanabe-Sugano diagrams,” J. Chem. Educ. 72, 886–888 (1995). [CrossRef]
  17. B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Appl. Phys. B 36, 195–201 (1985). [CrossRef]
  18. L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009). [CrossRef]
  19. W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008). [CrossRef]
  20. M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988). [CrossRef]
  21. D. L. Wood and K. Nassau, “Optical properties of gadolinium gallium garnet,” Appl. Opt. 29, 3704–3707 (1990). [CrossRef]
  22. B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983). [CrossRef]
  23. H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009). [CrossRef]
  24. A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990). [CrossRef]
  25. C. Greskovich and S. Duclos, “Ceramic scintillators,” Annu. Rev. Mater. Sci. 27, 69–88 (1997). [CrossRef]
  26. W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993). [CrossRef]
  27. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010). [CrossRef]
  28. A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009). [CrossRef]
  29. J. C. de Mello, H. F. Wittmann, and R. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997). [CrossRef]
  30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  31. G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200, 17–18 (1993). [CrossRef]
  32. K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31–32, 71–77 (1984). [CrossRef]
  33. A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011). [CrossRef]
  34. A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007). [CrossRef]
  35. S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited