OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 5 — Feb. 10, 2014
  • pp: 937–943

High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschii, O. Vitrik, and Yu. Kulchin  »View Author Affiliations


Applied Optics, Vol. 53, Issue 5, pp. 937-943 (2014)
http://dx.doi.org/10.1364/AO.53.000937


View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fabrication method of the high-quality fiber microaxicons (FMAs) on the endface of the optical fiber was developed. Using several types of the commercially available optical fibers we experimentally demonstrated the fabrication of a high-quality FMA focusing a laser beam into a tiny spot with a FWHM0.6λ and Bessel-like field distribution. It was also demonstrated that choosing the appropriate chemical composition of the etching solution makes it possible to change the shape of the FMA tip from conical to hemispherical. This allows one to change the spatial distribution of the output laser beam, which can represent both the Bessel-like beam with a depth of focus of up to 49λ and a very tiny focal spot close to the diffraction limit size. Experimentally measured focusing characteristics of the fabricated FMAs obtained using a homemade collection-mode scanning near-field optical microscope setup demonstrate good agreement with numerical simulations based on the 3D finite-difference time-domain simulations.

© 2014 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.3300) Lasers and laser optics : Laser beam shaping
(220.4610) Optical design and fabrication : Optical fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: October 16, 2013
Revised Manuscript: January 9, 2014
Manuscript Accepted: January 16, 2014
Published: February 7, 2014

Citation
A. Kuchmizhak, S. Gurbatov, A. Nepomniaschii, O. Vitrik, and Yu. Kulchin, "High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams," Appl. Opt. 53, 937-943 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-5-937


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. 50, 166–169 (1960). [CrossRef]
  2. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microw. Opt. Acoust. 2, 105–112 (1978).
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  4. A. Piskarskas, V. Smilgevicius, V. Jarutis, V. Pasiskevicius, S. Wang, J. Tellefsen, and F. Laurell, “Noncollinear second harmonic generation in periodically poled KtiOPO4 excited by the Bessel beam,” Opt. Lett. 24, 1053–1055 (1999). [CrossRef]
  5. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993). [CrossRef]
  6. V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011). [CrossRef]
  7. A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001). [CrossRef]
  8. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33, 2155–2157 (2008). [CrossRef]
  9. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002). [CrossRef]
  10. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17, 2375–2384 (2009). [CrossRef]
  11. J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009). [CrossRef]
  12. S.-K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003). [CrossRef]
  13. Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006). [CrossRef]
  14. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).
  15. Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013). [CrossRef]
  16. Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013). [CrossRef]
  17. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061–8067 (2007). [CrossRef]
  18. S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006). [CrossRef]
  19. M. Ohtsu, Progress in Nano-Electro Optics III/Industrial Applications and Dynamics of the Nano-Optical System (Springer, 2005).
  20. H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425–426 (1981). [CrossRef]
  21. www.thorlabs.com .
  22. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289–7292 (1998). [CrossRef]
  23. R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999). [CrossRef]
  24. D. R. Turner, “Etch procedure for optical fibers,” U.S. patent4,469,554 (4September1984).
  25. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
  26. S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48, 6172–6177 (2009). [CrossRef]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2000).
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  29. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221–230 (2009). [CrossRef]
  30. N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At., Mol., Opt. Phys. 48, 99–151 (2002).
  31. T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010). [CrossRef]
  32. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fuji, “Two point separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Opt. Express 11, 3271–3276 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited