OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 6 — Feb. 20, 2014
  • pp: 1052–1062

Comparison of a new photosensitizer with erythrosine B in an AA/PVA-based photopolymer material

Yue Qi, Haoyu Li, Jean Pierre Fouassier, Jacques Lalevée, and John T. Sheridan  »View Author Affiliations


Applied Optics, Vol. 53, Issue 6, pp. 1052-1062 (2014)
http://dx.doi.org/10.1364/AO.53.001052


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dyes often act as the photoinitiator PI/photosensitizer PS in photopolymer materials and are therefore of significant interest. The properties of the PI/PS used strongly influences grating formation when the material layer is exposed holographically. In this paper, the ability of a recently synthesized dye, D_1, to sensitize an acrylamide/polyvinyl alcohol (AA/PVA) based photopolymer is examined, and the material performance is characterized using an extended nonlocal photopolymerization-driven diffusion model. Electron spin resonance spin-trapping (ESR-ST) experiments are also carried out to characterize the generation of the initiator/primary radical, R, during exposure. The results obtained are then compared with those for the corresponding situation when using a xanthene dye, i.e., erythrosine B, under the same experiment conditions. The results indicate that the nonlocal effect is greater when this new photosensitizer is used in the material. Analysis indicates that this is the case because of the dye’s (D_1) weak absorptivity and the resulting slow rate of primary radical production.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(160.5335) Materials : Photosensitive materials

ToC Category:
Materials

History
Original Manuscript: November 15, 2013
Revised Manuscript: December 18, 2013
Manuscript Accepted: December 30, 2013
Published: February 12, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yue Qi, Haoyu Li, Jean Pierre Fouassier, Jacques Lalevée, and John T. Sheridan, "Comparison of a new photosensitizer with erythrosine B in an AA/PVA-based photopolymer material," Appl. Opt. 53, 1052-1062 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-6-1052


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  2. J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).
  3. N. Capolla and R. A. Lessard, “Processing of holograms recorded in methylene blue sensitized gelatin,” Appl. Opt. 27, 3008–3012 (1988). [CrossRef]
  4. J. J. A. Couture and R. A. Lessard, “Modulation transfer function measurements for thin layers of azo dyes in PVA matrix used as an optical recording material,” Appl. Opt. 27, 3368–3374 (1988). [CrossRef]
  5. Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. B 30, 3298–3307 (2013). [CrossRef]
  6. Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B 30, 3308–3315 (2013). [CrossRef]
  7. M. R. Gleeson, J. T. Sheridan, F. K. Bruder, T. Rölle, H. Berneth, M. S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011). [CrossRef]
  8. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009). [CrossRef]
  9. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009). [CrossRef]
  10. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010). [CrossRef]
  11. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010). [CrossRef]
  12. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006). [CrossRef]
  13. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302, (2008). [CrossRef]
  14. S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453, (2000). [CrossRef]
  15. K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003). [CrossRef]
  16. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870, (2010). [CrossRef]
  17. E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747, (2011). [CrossRef]
  18. Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012). [CrossRef]
  19. Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. (to be published).
  20. M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013). [CrossRef]
  21. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007). [CrossRef]
  22. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001). [CrossRef]
  23. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993). [CrossRef]
  24. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999). [CrossRef]
  25. H. K. Mahabadi, “Effects of chain-length dependence of termination rate-constant on the kinetics of free-radical polymerization. Part 1. Evaluation of an analytical expression relating the apparent rate-constant of termination to the number-average degree of polymerization,” Macromolecules 18, 1319–1324 (1985). [CrossRef]
  26. G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends Polym. Sci. 2, 282–290 (1994).
  27. G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1991).
  28. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009). [CrossRef]
  29. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010). [CrossRef]
  30. P. Tordo, Spin-Trapping: Recent Developments and Applications (The Royal Society of Chemistry, 1998).
  31. J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010). [CrossRef]
  32. D. R. Duling, “Simulation of multiple isotropic spin trap EPR spectra,” J. Magn. Reson., Ser. B 104, 105–110 (1994). [CrossRef]
  33. L. Bornstein, Magnetic Properties of Free Radicals, H. Fischer, ed. (Springer-Verlag, 2005), Vol. 26d.
  34. A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006). [CrossRef]
  35. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008). [CrossRef]
  36. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006). [CrossRef]
  37. J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000). [CrossRef]
  38. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  39. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited