OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 6 — Feb. 20, 2014
  • pp: 1094–1102

Micro-Spec: an ultracompact, high-sensitivity spectrometer for far-infrared and submillimeter astronomy

Giuseppe Cataldo, Wen-Ting Hsieh, Wei-Chung Huang, S. Harvey Moseley, Thomas R. Stevenson, and Edward J. Wollack  »View Author Affiliations


Applied Optics, Vol. 53, Issue 6, pp. 1094-1102 (2014)
http://dx.doi.org/10.1364/AO.53.001094


View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (μ-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(220.2740) Optical design and fabrication : Geometric optical design
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 22, 2013
Revised Manuscript: December 17, 2013
Manuscript Accepted: January 7, 2014
Published: February 13, 2014

Citation
Giuseppe Cataldo, Wen-Ting Hsieh, Wei-Chung Huang, S. Harvey Moseley, Thomas R. Stevenson, and Edward J. Wollack, "Micro-Spec: an ultracompact, high-sensitivity spectrometer for far-infrared and submillimeter astronomy," Appl. Opt. 53, 1094-1102 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-6-1094


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Werner, T. L. Roellig, F. J. Low, G. H. Rieke, M. Rieke, W. F. Hoffmann, E. Young, J. R. Houck, B. Brandl, G. G. Fazio, J. L. Hora, R. D. Gehrz, G. Helou, B. T. Soifer, J. Stauffer, J. Keene, P. Eisenhardt, D. Gallagher, T. N. Gautier, W. Irace, C. R. Lawrence, L. Simmons, J. E. Van Cleve, M. Jura, E. L. Wright, and D. P. Cruikshank, “The Spitzer space telescope mission,” Astrophys. J., Suppl. Ser. 154, 1–9 (2004).
  2. G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory, an ESA facility for far-infrared and submillimeter astronomy,” Astron. Astrophys. 518, 1–6 (2010). [CrossRef]
  3. M. F. Kessler, J. A. Steinz, M. E. Anderegg, J. Clavel, G. Drechsel, P. Estaria, J. Faelker, J. R. Riedinger, A. Robson, B. G. Taylor, and S. Ximénez de Ferrán, “The Infrared Space Observatory (ISO),” Astron. Astrophys. 315, L27–L31 (1996).
  4. T. Nakagawa, H. Matsuhara, and Y. Kawakatsu, “The next-generation infrared space telescope SPICA,” Proc. SPIE 8442, 844200 (2012).
  5. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005), pp. 98–106, 143–149.
  6. H. A. Rowland, “On concave gratings for optical purposes,” Philos. Mag. 16(99), 197–210 (1883). [CrossRef]
  7. H. W. Yen, H. R. Friedrich, R. J. Morrison, and G. L. Tangonan, “Planar Rowland spectrometer for fiber-optic wavelength demultiplexing,” Opt. Lett. 6, 639–641 (1981). [CrossRef]
  8. R. März and C. Cremer, “On the theory of planar spectrographs,” J. Lightwave Technol. 10, 2017–2022 (1992). [CrossRef]
  9. M. Wu and Y. J. Chen, “Design considerations for Rowland circle gratings used in photonic integrated devices for WDM applications,” J. Lightwave Technol. 12, 1939–1942 (1994). [CrossRef]
  10. P. Muñoz, D. Pastor, J. Capmany, and A. Martínez, “Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings,” Opt. Express 11, 2425–2432 (2003). [CrossRef]
  11. B. J. Naylor, “Broadband millimeter-wave spectroscopy with Z-Spec: an unbiased molecular-line survey of the starburst galaxy M82,” Ph.D. Thesis (California Institute of Technology, 2008).
  12. C. M. Bradford, B. J. Naylor, J. Zmuidzinas, J. J. Bock, J. Gromke, H. Nguyen, M. Dragovan, M. Yun, L. Earle, J. Glenn, H. Matsuhara, P. A. R. Ade, and L. Duband, “WaFIRS, a waveguide far-IR spectrometer: enabling spectroscopy of high-z galaxies in the far-IR and submillimeter,” Proc. SPIE 4850, 1137–1147 (2003).
  13. C. M. Bradford, P. Ade, J. Aguirre, J. J. Bock, L. Duband, L. Earle, J. Glenn, H. Matsuhara, B. J. Naylor, H. Nguyen, M. Yun, and J. Zmuidzinas, “Z-Spec: a broadband millimeter-wave grating spectrometer—design, construction, and first cryogenic measurements,” Proc. SPIE 5408, 257–267 (2004).
  14. L. Earle, P. Ade, J. Aguirre, R. Aikin, J. Battle, J. Bock, C. M. Bradford, M. Dragovan, L. Duband, J. Glenn, G. Griffin, V. Hristov, P. Maloney, H. Matsuhara, B. Naylor, H. Nguyen, M. Yun, and J. Zmuidzinas, “Z-Spec: a broadband, direct-detection, millimeter-wave spectrometer—instrument status and first results,” Proc. SPIE 6275, 1–9 (2006).
  15. W. Rotman and R. F. Turner, “Wide-angle microwave lens for line source applications,” IEEE Trans. Antennas Propag. 11, 623–632 (1963). [CrossRef]
  16. T. Katagi, S. Mano, and S. I. Sato, “An improved design method of Rotman lens antennas,” IEEE Trans. Antennas Propag. 32, 524–527 (1984). [CrossRef]
  17. R. C. Hansen, “Design trades for Rotman lenses,” IEEE Trans. Antennas Propag. 39, 464–472 (1991). [CrossRef]
  18. C. M. Rappaport and A. I. Zaghloul, “Multifocal bootlace lens design concepts: a review,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, 2B (IEEE, 2005), pp. 39–42.
  19. F. W. Gembicki, “Vector optimization for control with performance and parameter sensitivity indices,” Ph.D. Thesis (Case Western Reserve University, 1974).
  20. A. R. Kerr, “Surface impedance of superconductors and normal conductors in EM simulators,” National Radio Astronomy Observatory, Millimeter Array (MMA) Technical Report, Memo No. , January7, 1999.
  21. R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1992), Section 5.19, pp. 383–386.
  22. R. P. Hecken, “A near-optimum matching section without discontinuities,” IEEE Trans. Microwave Theory Tech. 20, 734–739 (1972). [CrossRef]
  23. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures (McGraw-Hill, 1964), pp. 290–291.
  24. S. Silver, Microwave Antenna Theory and Design (McGraw-Hill, 1949), pp. 439–448, 453–457.
  25. S. H. Moseley, E. J. Wollack, and G. Hinshaw, “Limits to the efficiency of imaging systems,” in Proceedings of the Far-Infrared, sub-mm, and mm Detector Technology Workshop, J. Wolf, J. Farhoomand, and C. R. McCreight, eds. (NASA/CP-211408, 2002), pp. 388–391.
  26. J. C. Mather, “Broad-band flared horn with low sidelobes,” IEEE Trans. Antennas Propag. 29, 967–969 (1981). [CrossRef]
  27. R. C. Hansen, Phased Array Antennas (Wiley, 1998), p. 15.
  28. J. C. Slater and N. H. Frank, Introduction to Theoretical Physics (McGraw-Hill, 1933), p. 317.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited