OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 6 — Feb. 20, 2014
  • pp: 1221–1227

Chemical mechanical polishing to improve the efficiency uniformity of beam sampling grating

Huanle Rao, Ying Liu, Zhengkun Liu, Keqiang Qiu, Xiangdong Xu, Yilin Hong, and Shaojun Fu  »View Author Affiliations

Applied Optics, Vol. 53, Issue 6, pp. 1221-1227 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to improve the efficiency uniformity of large-aperture beam sampling gratings (BSGs), a conventional chemical mechanical polishing (CMP) process of fused silica by CeO2 slurry is proposed to modify their groove profiles. With the proposed CMP process, the efficiency uniformity of several BSGs with an aperture of 430mm×430mm has been successfully controlled within an rms of 5%. The proposed CMP process is an effective method to improve the efficiency uniformity of large-aperture BSGs. Using the proposed CMP process, the requirement of the uniformity of the holographic ion beam etching process can be released in the realization of large-aperture BSGs.

© 2014 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(220.5450) Optical design and fabrication : Polishing
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Optical Devices

Original Manuscript: October 28, 2013
Revised Manuscript: January 14, 2014
Manuscript Accepted: January 14, 2014
Published: February 20, 2014

Huanle Rao, Ying Liu, Zhengkun Liu, Keqiang Qiu, Xiangdong Xu, Yilin Hong, and Shaojun Fu, "Chemical mechanical polishing to improve the efficiency uniformity of beam sampling grating," Appl. Opt. 53, 1221-1227 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, and I. M. Thomas, “Low efficiency gratings for 3rd harmonic diagnostics applications,” Proc. SPIE 2633, 121–128 (1995). [CrossRef]
  2. J. A. Britten, S. M. Herman, L. J. Summers, M. C. Rushford, L. Auyang, I. M. Barton, B. W. Shore, S. N. Dixit, T. G. Parham, C. R. Hoaglan, C. T. Thompson, C. L. Battersby, J. M. Yoshiyama, and R. P. Mouser, “Manufacture, optical performance and laser damage characteristics of diffractive optics for the national ignition facility,” Proc. SPIE 3578, 337–346 (1998). [CrossRef]
  3. J. Yu, J. A. Britten, L. Summers, S. Dixit, C. R. Hoaglan, M. D. Aasen, R. P. Hackel, and R. R. Prasad, “Fabrication of beam sampling gratings for the National Ignition Facility (NIF),” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CFL6.
  4. X. R. Chen, C. M. Li, and J. H. Wu, “Study on the characteristic of energy response of large sampling devices to ultra-high energy laser diagnosis,” Proc. SPIE 7382, 221–225 (2009).
  5. H. L. Garvin, A. Au, and M. L. Minden, “Ion-etched gratings for laser applications,” Proc. SPIE 240, 63–68 (1981).
  6. L. M. Hobrock, H. L. Garvin, R. J. Withrington, and C. T. Wellman, “Method for fabrication low efficiency diffraction gratings and product obtained thereby,” U.S. patent4,828,356 (9May1989).
  7. J. Neauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration lines and laser megajoule facilities,” Appl. Opt. 44, 3143–3152 (2005). [CrossRef]
  8. C. M. Li, X. R. Chen, J. H. Wu, Q. Liu, and Z. Y. Hu, “Design and fabrication of fused silica grating with shallow groove for energy measurement of high-energy pulse laser,” Proc. SPIE 7655, 76551U (2010). [CrossRef]
  9. H. Nojo, M. Kodera, and R. Nakata, “Slurry engineering for self-stopping, dishing free SiO2-CMP,” in Electron Devices Meeting (IEEE, 1996), pp. 349–352.
  10. D. S. Lim, J. W. Ahn, H. S. Park, and J. H. Shin, “The effect of CeO2 abrasive size on dishing and step height reduction of silicon oxide film in STI-CMP,” Surf. Coat. Technol. 200, 1751–1754 (2005). [CrossRef]
  11. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, and B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995). [CrossRef]
  12. Z. F. Zhang, W. L. Liu, and Z. T. Song, “Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry,” Appl. Opt. 49, 5480–5485 (2010). [CrossRef]
  13. http://en.wikipedia.org/wiki/Ink_brush (2013).
  14. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficiency implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  15. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  16. K. A. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology, 2nd ed. (William Andrew, 2008), pp. 22–29.
  17. B. Ashe, K. L. Marshall, C. Giacofei, A. L. Rigatti, T. J. Kessler, A. W. Schmid, J. B. Oliver, J. Keck, and A. Kozlov, “Evaluation of cleaning methods for multilayer diffraction gratings,” Proc. SPIE 6403, 64030O (2007). [CrossRef]
  18. B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007). [CrossRef]
  19. S. Chen, B. Sheng, X. Xu, and S. Fu, “Wet-cleaning of contaminants on the surface of multilayer dielectric pulse compressor gratings by the piranha solution,” Proc. SPIE 7655, 765522 (2010). [CrossRef]
  20. H. P. Howard, A. F. Aiello, J. G. Dressler, N. R. Edwards, T. J. Kessler, A. A. Kozlov, I. R. T. Manwaring, K. L. Marshall, J. B. Oliver, S. Papernov, A. L. Rigatti, A. N. Roux, A. W. Schmid, N. P. Slaney, C. C. Smith, B. N. Taylor, and S. D. Jacobs, “Improving the performance of high-laser-damage-threshold, multilayer dielectric pulse-compression gratings through low-temperature chemical cleaning,” Appl. Opt. 52, 1682–1692 (2013). [CrossRef]
  21. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009). [CrossRef]
  22. H. T. Nguyen, C. C. Larson, and J. A. Britten, “Improvement of laser damage resistance and diffraction efficiency of multilayer dielectric diffraction gratings by HF etchback linewidth tailoring,” Proc. SPIE 7842, 78421H (2010). [CrossRef]
  23. L. Sheehan, J. L. Hendrix, C. Battersby, and S. Oberhelman, “National ignition facility small optics laser-induced damage and photometry measurements program,” Proc. SPIE 3782, 518–524 (1999). [CrossRef]
  24. G. H. Hu, Y. A. Zhao, X. F. Liu, D. W. Li, Q. L. Xiao, K. Yi, and J. D. Shao, “Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica,” Opt. Lett. 38, 2632–2635 (2013). [CrossRef]
  25. J. H. Campbell, F. Rainter, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444–456 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited