OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 7 — Mar. 1, 2014
  • pp: 1328–1332

Compact passively Q-switched Raman laser at 1176  nm and yellow laser at 588  nm using Nd3+:YAG/Cr4+:YAG composite crystal

Wei Jiang, Siqi Zhu, Xuezhang Chen, Yumeng Liu, Zhenqiang Chen, Hao Yin, Zhen Li, Sue Wang, and Yihong Chen  »View Author Affiliations

Applied Optics, Vol. 53, Issue 7, pp. 1328-1332 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (603 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compact passively Q-switched YVO4 first Stokes Raman laser and its frequency doubling laser were reported by using Nd3+:YAG/Cr4+:YAG composite crystal for what is believed to be the first time. Nanosecond lasers at 1176 and 588 nm were obtained. At the incident pump power of 7.84 W, the average output power at 1176 nm was 423 mW with a pulse width of 1.32 ns and the pulse repetition frequency (PRF) of 13.7 kHz. By applying a KTP crystal, an intracavity second harmonic generation (SHG) laser at 588 nm also was realized. With an incident pump power of 8.95 W, we obtained 105.3 mW average output power of a yellow laser corresponding to the pulse width of 4.95 ns and the PRF of 10.75 kHz. In addition, the composite crystal efficiently compacted the resonant cavity.

© 2014 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3550) Lasers and laser optics : Lasers, Raman
(160.3380) Materials : Laser materials
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 24, 2013
Revised Manuscript: December 22, 2013
Manuscript Accepted: January 25, 2014
Published: February 25, 2014

Wei Jiang, Siqi Zhu, Xuezhang Chen, Yumeng Liu, Zhenqiang Chen, Hao Yin, Zhen Li, Sue Wang, and Yihong Chen, "Compact passively Q-switched Raman laser at 1176  nm and yellow laser at 588  nm using Nd3+:YAG/Cr4+:YAG composite crystal," Appl. Opt. 53, 1328-1332 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32, 121–158 (2008). [CrossRef]
  2. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, H. Shen, Y. Zheng, L. Huang, and Z. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9  W yellow light,” Opt. Express 17, 21544–21550 (2009). [CrossRef]
  3. W. Chen, Y. Wei, C. Huang, X. Wang, H. Shen, S. Zhai, S. Xu, B. Li, Z. Chen, and G. Zhang, “Second-Stokes YVO4/Nd:YVO4/YVO4 self-frequency Raman laser,” Opt. Lett. 37, 1968–1970 (2012). [CrossRef]
  4. P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012). [CrossRef]
  5. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, and T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20, 9810–9818 (2012). [CrossRef]
  6. R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10, 025801 (2013). [CrossRef]
  7. S. Zhang, E. Wu, H. Pan, and H. Zeng, “Q-switched mode-locking with Cr4+: YAG in a diode pumped Nd: GdVO4 laser,” Appl. Phys. B 78, 335–338 (2004). [CrossRef]
  8. Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett. 29, 1251–1253 (2004). [CrossRef]
  9. Z. Cong, X. Zhang, Q. Wang, Z. Liu, X. Chen, S. Fan, X. Zhang, H. Zhang, X. Tao, and S. Li, “Theoretical and experimental study on the Nd3+:YAG/BaWO4/KTP yellow laser generating 8.3  W output power,” Opt. Express 18, 12111–12118 (2010). [CrossRef]
  10. S. Ding, M. Wang, S. Wang, and W. Zhang, “Investigation on LD end-pumped passively Q-switched c-cut Nd: YVO4 self-Raman laser,” Opt. Express 21, 13052–13061 (2013). [CrossRef]
  11. Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6  nm light produced by sum-frequency generation of diode-end-pumped Nd3+:YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7, 491–494 (2010). [CrossRef]
  12. Y. Duan, H. Zhu, C. Huang, G. Zhang, and Y. Wei, “Potential sodium D2 resonance radiation generated by intra-cavity SHG of a c-cut Nd:YVO4 self-Raman laser,” Opt. Express 19, 6333–6338 (2011). [CrossRef]
  13. T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97, 799–804 (2009). [CrossRef]
  14. J. Peng, Y. Zheng, K. Zheng, and X. Chang, “Compact Q-switched and mode-locked Nd3+:YVO4/Cr4+:YAG self-Raman laser,” Appl. Opt. 51, 5126–5129 (2012). [CrossRef]
  15. S. Ding, W. Zhang, S. Wang, X. Wang, J. Zhang, and M. Wang, “Theoretical and experimental study on passively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Opt. 52, 2583–2590 (2013).
  16. S. Q. Zhu, S. E. Wang, Z. Q. Chen, Q. G. Yang, and J. Pan, “High-Power Passively Q-Switched 532  nm Green Laser by Using Nd3+:YAG/Cr4+:YAG Composite Crystal,” Laser Phys. 22, 1011–1014 (2012). [CrossRef]
  17. S. E. Wang, S. Q. Zhu, Z. Q. Chen, Q. G. Yang, and J. Pan, “High average power, compact passively Q-switched 532  nm green laser on Nd3+:YAG/Cr4+:YAG composite crystal,” J. Russ. Laser Res. 34, 166–167 (2013). [CrossRef]
  18. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” Opt. Lett. 17, 1166–1175 (2000).
  19. H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994). [CrossRef]
  20. W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited