OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 7 — Mar. 1, 2014
  • pp: 1396–1405

Parameter extraction from fabricated silicon photonic devices

Xi Chen, Zheng Li, Moustafa Mohamed, Li Shang, and Alan R. Mickelson  »View Author Affiliations

Applied Optics, Vol. 53, Issue 7, pp. 1396-1405 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three sets of devices were simulated, designed, and laid out for fabrication in the EuroPractice shuttle program and then measured in-house after fabrication. A combination of analytical and numerical modeling is used to extract the dispersion curves that define the effective index of refraction as a function of wavelength for three different classes of silicon photonic devices, namely, micro-ring resonators, racetrack resonators, and directional couplers. The results of this phenomenological study are made plausible by the linearity of the extracted dispersion curves with wavelength over the wavelength regime of interest (S and C bands) and the use of the determined effective indices to reconstruct the measured transmission as a function of wavelength curves in close agreement with experiment. The extracted effective indices can be used to place limits on the actual fabricated values of waveguide widths, thicknesses, radii of curvature, and coupling gaps.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.4241) Optical design and fabrication : Nanostructure fabrication
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: October 31, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: January 23, 2014
Published: February 27, 2014

Xi Chen, Zheng Li, Moustafa Mohamed, Li Shang, and Alan R. Mickelson, "Parameter extraction from fabricated silicon photonic devices," Appl. Opt. 53, 1396-1405 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kaertner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29, 8–21 (2009). [CrossRef]
  2. J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Gunter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J.-M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 3401413 (2013). [CrossRef]
  3. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010). [CrossRef]
  4. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010). [CrossRef]
  5. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef]
  6. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007). [CrossRef]
  7. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15, 14467–14475 (2007). [CrossRef]
  8. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17, 585–587 (2005). [CrossRef]
  9. Y.-J. Quan, P.-D. Han, Q.-J. Ran, F.-P. Zeng, L.-P. Gao, and C.-H. Zhao, “A photonic wire-based directional coupler based on SOI,” Opt. Commun. 281, 3105–3110 (2008). [CrossRef]
  10. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007). [CrossRef]
  11. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011). [CrossRef]
  12. D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B.-P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012). [CrossRef]
  13. R. Palmer, L. Alloatti, D. Korn, P. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach-Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25, 1226–1229 (2013). [CrossRef]
  14. J. V. Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009). [CrossRef]
  15. M. Yang, W. M. J. Green, S. Assefa, J. V. Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011). [CrossRef]
  16. B. G. Lee, C. L. Schow, A. V. Rylyakov, J. V. Campenhout, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, R. A. John, C. V. Jahnes, J. A. Kash, and Y. Vlasov, “Demonstration of a digital CMOS driver codesigned and integrated with a broadband silicon photonic switch,” J. Lightwave Technol. 29, 1136–1142 (2011). [CrossRef]
  17. A. Rylyakov, C. Schow, B. Lee, W. M. J. Green, S. Assefa, F. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. Kash, and Y. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid St. Circ. 47, 345–354 (2012). [CrossRef]
  18. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photon. Technol. Lett. 24, 473–475 (2012). [CrossRef]
  19. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010). [CrossRef]
  20. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), (IEEE, 2012), pp. 33.8.1–33.8.3.
  21. L. Vivien, J. Osmond, D. Marris-Morini, P. Crozat, E. Cassan, J. Fedeli, S. Brision, J. F. Damlencourt, V. Mazzochi, D. Van Thourhout, and J. Brouckaert, “European Helios project: silicon photonic photodetector integration,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 10–12.
  22. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  23. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008). [CrossRef]
  24. X. Wang, W. Shi, M. Hochberg, K. Adam, E. Schelew, J. Young, N. Jaeger, and L. Chrostowski, “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography,” in 9th IEEE International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 288–290.
  25. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010). [CrossRef]
  26. M. Koshiba, “Time-domain beam propagation method applied to nonlinear photonic crystal waveguide devices,” in Integrated Photonics Research and Applications/Nanophotonics for Information Systems (Optical Society of America, 2005), paper ITuD1.
  27. A. Olyaee and F. T. Hamadani, “Compound FDTD method for silicon photonics,” AIP Advances 1, 032107 (2011).
  28. D. M. H. Leung, N. Kejalakshmy, B. M. A. Rahman, and K. T. V. Grattan, “Rigorous modal analysis of silicon strip nanoscale waveguides,” Opt. Express 18, 8528–8539 (2010). [CrossRef]
  29. S. K. Selvaraja, “Wafer-scale fabrication technology for silicon photonic integrated circuits,” Ph.D. thesis (Ghent University, Ghent, Belgium, 2011).
  30. R. E. Bellman, Dynamic Programming (Princeton University, 1957).
  31. R. E. Bellman, Adaptive Control Processes—A Guided Tour (Princeton University, 1961).
  32. J. P. Rust, “Using randomization to break the curse of dimensionality,” Econometrica 65, 487–516 (1997). [CrossRef]
  33. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006). [CrossRef]
  34. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008). [CrossRef]
  35. C. Maleville and C. Mazuré, “Smart-cut technology: from 300 mm ultrathin SOI production to advanced engineered substrates,” Solid-State Electron. 48, 1055–1063 (2004). [CrossRef]
  36. K. Cheng, “Improving front side process uniformity by back-side metallization,” in CS MANTECH Conference, Boston, MA (2012).
  37. C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip nanophotonic networks,” in 17th IEEE International Symposium on High Performance Computer Architecture (HPCA), (IEEE, 2011), pp. 122–131.
  38. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Robinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15, 7557–7563 (2007). [CrossRef]
  39. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19, 5143–5148 (2011). [CrossRef]
  40. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010). [CrossRef]
  41. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008). [CrossRef]
  42. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002). [CrossRef]
  43. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004). [CrossRef]
  44. J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16, 1331–1333 (2004). [CrossRef]
  45. X. Zhang, D. Huang, and X. Zhang, “Transmission characteristics of dual microring resonators coupled via 3 × 3 couplers,” Opt. Express 15, 13557–13573 (2007). [CrossRef]
  46. C. Li, X. Luo, and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23, 064010 (2008). [CrossRef]
  47. S. Werquin, S. Verstuyft, and P. Bienstman, “Integrated interferometric approach to solve microring resonance splitting in biosensor applications,” Opt. Express 21, 16955–16963 (2013). [CrossRef]
  48. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).
  49. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988). [CrossRef]
  50. M. Auslender and S. Hava, “Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures,” Opt. Lett. 21, 1765–1767 (1996). [CrossRef]
  51. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975). [CrossRef]
  52. N. Rouger, L. Chrostowski, and R. Vafaei, “Temperature effects on Silicon-on-Insulator (SOI) racetrack resonators: a coupled analytic and 2-D finite difference approach,” J. Lightwave Technol. 28, 1380–1391 (2010). [CrossRef]
  53. ePIXfab, http://www.epixfab.eu .
  54. X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013). [CrossRef]
  55. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992). [CrossRef]
  56. G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550  K at the wavelength of 1523  nm,” Appl. Phys. Lett. 74, 3338–3340 (1999). [CrossRef]
  57. IMEC, http://www.imec.be .
  58. LETI, http://www-leti.cea.fr .
  59. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  60. M. Masi, R. Orobtchouk, G. Fan, J.-M. Fedeli, and L. Pavesi, “Towards a realistic modelling of ultra-compact racetrack resonators,” J. Lightwave Technol. 28, 3233–3242 (2010).
  61. S. Sheem and J. R. Whinnery, “Guiding by single curved boundaries in integrated optics,” Wave Electron. 1, 61–68 (1974).
  62. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3, 1135–1146 (1985). [CrossRef]
  63. G. T. Reed, Silicon Photonics: The State of the Art (Wiley-Interscience, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited