OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 7 — Mar. 1, 2014
  • pp: 1466–1473

Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers

Anka Schwuchow, Sonja Unger, Sylvia Jetschke, and Johannes Kirchhof  »View Author Affiliations


Applied Optics, Vol. 53, Issue 7, pp. 1466-1473 (2014)
http://dx.doi.org/10.1364/AO.53.001466


View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Considering the continuous development of ytterbium (Yb)-doped fibers for fiber lasers and amplifiers, thorough characterization of the features and quality of such fibers is necessary now more than ever. In particular, the evaluation of the very strong core attenuation that results from Yb absorption and the losses accompanying photodarkening (PD) processes in Yb-doped optical fibers is still of immense interest. Keeping that in mind, the potential of a method using pinhole fibers will be demonstrated here. Moreover, the investigation of fluorescence properties of Yb3+ is also important; it can be affected by phenomena such as reabsorption, inhomogeneous pump intensity distribution, amplified spontaneous emission, lasing, and, lastly, PD. As these phenomena occur while measuring the fluorescence properties of Yb3+ in optical fibers, they can distort the fluorescence spectra and fluorescence decay significantly. We suggest a twice-perpendicular measurement method and strict time management to avoid these interfering phenomena during the fluorescence measurements.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(160.2290) Materials : Fiber materials
(160.5690) Materials : Rare-earth-doped materials
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 15, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 27, 2014
Published: February 28, 2014

Citation
Anka Schwuchow, Sonja Unger, Sylvia Jetschke, and Johannes Kirchhof, "Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers," Appl. Opt. 53, 1466-1473 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-7-1466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Ainslie, S. P. Craig, and S. T. Davey, “The absorption and fluorescence spectra of rare earth ions in silica-based monomode fiber,” J. Lightwave Technol. 6, 287–293 (1988). [CrossRef]
  2. S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104, 55–63 (2003). [CrossRef]
  3. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000). [CrossRef]
  4. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997). [CrossRef]
  5. S. Jetschke, A. Schwuchow, S. Unger, M. Leich, and J. Kirchhof, “Deactivation of Yb3+ ions by the photodarkening process,” Opt. Mater. Express 3, 452–458 (2013). [CrossRef]
  6. J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high power laser fibers,” Proc. SPIE 5723, 261–272 (2005). [CrossRef]
  7. S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb+3-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284, 5774–5780 (2011). [CrossRef]
  8. S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 7195, 71952B (2009). [CrossRef]
  9. C. Askins and M. Putnam, “Photodarkening and photobleaching in fiber optic Bragg gratings,” J. Lightwave Technol. 15, 1363–1370 (1997). [CrossRef]
  10. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539–11544 (2006). [CrossRef]
  11. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fibre Bragg grating inscription combining DUV femtosecond laser pulses and two-beam interferometry,” Opt. Express 16, 19169–19178 (2008). [CrossRef]
  12. M. Engholm and L. Norin, “Preventing PD in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16, 1260–1268 (2008). [CrossRef]
  13. K. E. Mattsson, “Photodarkening of rare earth doped silica,” Opt. Express 19, 19797–19812 (2011). [CrossRef]
  14. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21, 7590–7598 (2013). [CrossRef]
  15. S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium doped laser fibers,” Proc. SPIE 7212, 72121B (2009). [CrossRef]
  16. A. D. Guzman Chavez, A. V. Kir’yanov, Y. O. Barmenkov, and N. N. Il’ichev, “Reversible photo-darkening and resonant photo-bleaching of Ytterbium-doped silica fiber at in-core 977  nm and 543  nm irradiation,” Laser Phys. Lett. 4, 734–739 (2007). [CrossRef]
  17. D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, and J. Dellith, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012). [CrossRef]
  18. A. V. Kir’yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at 980  nm with regard to the Ytterbium ion-pairs’ effect,” Opt. Express 14, 3981–3992 (2006). [CrossRef]
  19. J. J. Montiel i Ponsoda, M. J. Söderlund, J. P. Koplow, J. J. Koponen, and S. Honkanen, “Photodarkening-induced increase of fiber temperature,” Appl. Opt. 49, 4139–4143 (2010). [CrossRef]
  20. T. C. Newell, P. Petersen, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007). [CrossRef]
  21. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51, 7758–7764 (2012). [CrossRef]
  22. M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited