OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 8 — Mar. 10, 2014
  • pp: 1488–1492

Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06  μm

Xinlu Zhang, Su Zhang, Nana Xiao, Jinhui Cui, Jiaqun Zhao, and Li Li  »View Author Affiliations

Applied Optics, Vol. 53, Issue 8, pp. 1488-1492 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.

© 2014 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 22, 2013
Revised Manuscript: January 19, 2014
Manuscript Accepted: January 27, 2014
Published: March 3, 2014

Xinlu Zhang, Su Zhang, Nana Xiao, Jinhui Cui, Jiaqun Zhao, and Li Li, "Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06  μm," Appl. Opt. 53, 1488-1492 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef]
  2. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, CW 2.066  μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37, 8460–8476 (1998). [CrossRef]
  3. J. Yu, B. C. Trieu, E. A. Modin, U. P. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1  J/pulse Q-switched 2  μm solid-state laser,” Opt. Lett. 31, 462–464 (2006). [CrossRef]
  4. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.
  5. D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).
  6. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000). [CrossRef]
  7. C. He and D. K. Killinger, “Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-μm microchip Ho, Tm:YAG laser,” Opt. Lett. 19, 396–398 (1994). [CrossRef]
  8. I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998). [CrossRef]
  9. B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011). [CrossRef]
  10. V. Sudesh and K. Asai, “Spectroscopic and diode-pumped-laser properties of Tm, Ho:YLF; Tm, Ho:LuLF; and Tm, Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20, 1829–1837 (2003). [CrossRef]
  11. M. E. Storm and W. W. Rohrbach, “Single-longitudinal-mode lasing of Ho:Tm:YAG at 2.091  μm,” Appl. Opt. 28, 4965–4967 (1989). [CrossRef]
  12. C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001). [CrossRef]
  13. R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010). [CrossRef]
  14. Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010). [CrossRef]
  15. C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150  mW single-frequency output power at 2.02  μm,” Electron. Lett. 35, 152–153 (1999). [CrossRef]
  16. B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “7.3  W of single-frequency output power at 2.09  μm from an Ho:YAG monolithic nonplanar ring laser,” Opt. Lett. 33, 2161–2163 (2008). [CrossRef]
  17. L. Wang, C. Q. Gao, M. W. Gao, and Y. Li, “Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122  nm,” Opt. Express 21, 9541–9546 (2013). [CrossRef]
  18. J. Li, S. H. Yang, C. M. Zhao, H. Y. Zhang, and W. Xie, “Coupled-cavity concept applied to a highly compact single-frequency laser operating in the 2  μm spectral region,” Appl. Opt. 50, 1329–1332 (2011). [CrossRef]
  19. C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008). [CrossRef]
  20. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000). [CrossRef]
  21. L. Wang, C. Q. Gao, M. W. Gao, L. Liu, and F. Y. Yue, “Diode-pumped 2  μm tunable single-frequency Tm:LuAG laser with intracavity etalons,” Appl. Opt. 52, 1272–1275 (2013). [CrossRef]
  22. S. W. Henderson and C. P. Hale, “Tunable single-longitudinal-mode diode laser pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990). [CrossRef]
  23. B. T. McGuckin, R. T. Menzies, and C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 32, 2082–2084 (1993). [CrossRef]
  24. X. L. Zhang, Y. L. Ju, and Y. Z. Wang, “Diode-end-pumped room temperature Tm, Ho:YLF lasers,” Opt. Express 13, 4056–4063 (2005). [CrossRef]
  25. B. Q. Yao, F. Chen, C. H. Zhang, Q. Wang, C. T. Wu, and X. M. Duan, “Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser,” Opt. Lett. 36, 1554–1556 (2011). [CrossRef]
  26. X. L. Zhang, S. Zhang, C. Y. Wang, L. Li, J. Q. Zhao, and J. H. Cui, “Orthogonally polarized dual-wavelength single-longitudinal-mode Tm, Ho:LLF laser,” Opt. Express 21, 22699–22704 (2013). [CrossRef]
  27. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004). [CrossRef]
  28. M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho:Tm:YLiF4 laser at 10  Hz,” Opt. Lett. 20, 872–874 (1995). [CrossRef]
  29. H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011). [CrossRef]
  30. X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, and J. H. Cui, “Diode-pumped continuous wave and passively Q-switched Tm, Ho:LLF laser at 2  μm,” Opt. Express 21, 12629–12634 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited