OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 8 — Mar. 10, 2014
  • pp: 1604–1609

Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities

Jing Guo  »View Author Affiliations

Applied Optics, Vol. 53, Issue 8, pp. 1604-1609 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated the analogue of electromagnetically induced transparency (EIT) in the metal–insulator–metal plasmonic waveguide, which consists of a bus waveguide side-coupled with a series of slot cavities. By finite-difference time-domain simulations, it is found that the resonance wavelength of the slot cavity can be controlled by adjusting the length of the cavity. Moreover, the EIT-like response is strongly dependent on the coupling separation between the corresponding adjacent cavities. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity–cavity separations. This ultracompact plasmonic waveguide system may find important applications for multichannel plasmonic filter, nanoscale optical switching, and slow-light devices in highly integrated optical circuits and networks.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: October 17, 2013
Revised Manuscript: January 5, 2014
Manuscript Accepted: January 15, 2014
Published: March 6, 2014

Jing Guo, "Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities," Appl. Opt. 53, 1604-1609 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef]
  3. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef]
  4. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef]
  5. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006). [CrossRef]
  6. H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Optical bistability in metal–insulator–metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011). [CrossRef]
  7. G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012). [CrossRef]
  8. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  9. G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302–308 (2009). [CrossRef]
  10. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004). [CrossRef]
  11. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20, 18994–18999 (2012). [CrossRef]
  12. K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005). [CrossRef]
  13. H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012). [CrossRef]
  14. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal–dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009). [CrossRef]
  15. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005). [CrossRef]
  16. G. Tremblay and Y. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49, A36–A41 (2010). [CrossRef]
  17. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010). [CrossRef]
  18. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007). [CrossRef]
  19. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937 (2006). [CrossRef]
  20. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011). [CrossRef]
  21. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12678–12684 (2009). [CrossRef]
  22. S. Y. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009). [CrossRef]
  23. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 10, 1–6 (2010).
  24. Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009). [CrossRef]
  25. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012). [CrossRef]
  26. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef]
  27. Y. K. Gong, L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009). [CrossRef]
  28. Y. K. Gong, X. Liu, and L. Wang, “High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010). [CrossRef]
  29. Z. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  30. J. Park, H. Kim, I. M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express 16, 16903–16915 (2008). [CrossRef]
  31. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18, 14496–14510 (2010). [CrossRef]
  32. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011). [CrossRef]
  33. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18, 11111–11116 (2010). [CrossRef]
  34. G. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011). [CrossRef]
  35. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007). [CrossRef]
  36. A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009). [CrossRef]
  37. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on metal–insulator–metal waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011). [CrossRef]
  38. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009). [CrossRef]
  39. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006). [CrossRef]
  40. A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85, 085416 (2012). [CrossRef]
  41. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010). [CrossRef]
  42. G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett. 38, 558–560 (2013). [CrossRef]
  43. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  44. I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26, 2623–2633 (2009). [CrossRef]
  45. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef]
  46. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  47. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  48. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007). [CrossRef]
  49. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009). [CrossRef]
  50. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon induced transparency,” Phys. Rev. Lett. 104, 243902 (2010). [CrossRef]
  51. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]
  52. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]
  53. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011). [CrossRef]
  54. Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19, 3251–3257 (2011). [CrossRef]
  55. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012). [CrossRef]
  56. H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23, 444003 (2012). [CrossRef]
  57. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef]
  58. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  59. Y. Cui and C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” Appl. Opt. 51, 7482–7486 (2012). [CrossRef]
  60. H. Lu and X. M. Liu, “Optical bistability in subwavelength compound metallic grating,” Opt. Express 21, 13794–13799 (2013). [CrossRef]
  61. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited