OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 8 — Mar. 10, 2014
  • pp: 1629–1635

Generation of second-order vortex arrays with six-pinhole interferometers under plane wave illumination

Zhenhua Li and Chuanfu Cheng  »View Author Affiliations


Applied Optics, Vol. 53, Issue 8, pp. 1629-1635 (2014)
http://dx.doi.org/10.1364/AO.53.001629


View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method based on six-pinhole interferometers to generate vortex arrays with topological charge 2, only with plane wave illumination. The six-pinhole interferometer is composed of two concentric symmetrical three-pinhole interferometers with different radial distances of the pinholes and a relative rotation of 60 deg from each other. In the Fourier domain, the vortices with second-order topological charge are generated when the radial distances of the two three-pinhole interferometers satisfy some certain ratios. Due to the symmetry of the six-pinhole interferometer, such vortices are distributed at the vertices of some symmetrically distributed regular hexagons. The experimental results obtained in a focal-to-focal system show satisfactory coincidence with the calculations.

© 2014 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(050.4865) Diffraction and gratings : Optical vortices
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 1, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: February 3, 2014
Published: March 7, 2014

Citation
Zhenhua Li and Chuanfu Cheng, "Generation of second-order vortex arrays with six-pinhole interferometers under plane wave illumination," Appl. Opt. 53, 1629-1635 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-8-1629


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010). [CrossRef]
  2. O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  4. M. W. Beijersbergen, R. P. C. Coerwinke, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  5. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  6. M. W. Beijersbergen, L. Allen, H. E. L. O. vanderVeen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  7. Z. H. Li, M. N. Zhang, G. T. Liang, X. Li, X. Y. Chen, and C. F. Cheng, “Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination,” Opt. Express 21, 15755–15764 (2013). [CrossRef]
  8. K. Otsuka and S. C. Chu, “Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping,” Opt. Lett. 34, 10–12 (2009). [CrossRef]
  9. B. K. Singh, G. Singh, P. Senthilkumaran, and D. S. Mehta, “Generation of optical vortex arrays using single-element reversed-wavefront folding interferometer,” Int. J. Opt. 2012, 689612 (2012). [CrossRef]
  10. E. Brasselet, “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108, 087801 (2012). [CrossRef]
  11. Z. Wang, N. Zhang, and X. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19, 482–492 (2011). [CrossRef]
  12. Y. C. Lin, T. H. Lu, K. F. Huang, and Y. F. Chen, “Generation of optical vortex array with transformation of standing-wave Laguerre-Gaussian mode,” Opt. Express 19, 10293–10303 (2011). [CrossRef]
  13. J. J. Yu, C. H. Zhou, W. Jia, A. D. Hu, W. G. Cao, J. Wu, and S. Q. Wang, “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51, 2485–2490 (2012). [CrossRef]
  14. K. O’Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Opt. Express 14, 3039–3044 (2006). [CrossRef]
  15. G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E 75, 066613 (2007). [CrossRef]
  16. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46, 2893–2898 (2007). [CrossRef]
  17. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt. 46, 7862–7867 (2007). [CrossRef]
  18. M. Boguslawski, P. Rose, and C. Denz, “Increasing the structural variety of discrete nondiffracting wave fields,” Phys. Rev. A 84, 013832 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited