OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 8 — Mar. 10, 2014
  • pp: 1683–1696

Solar tomography adaptive optics

Deqing Ren, Yongtian Zhu, Xi Zhang, Jiangpei Dou, and Gang Zhao  »View Author Affiliations


Applied Optics, Vol. 53, Issue 8, pp. 1683-1696 (2014)
http://dx.doi.org/10.1364/AO.53.001683


View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60, and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

© 2014 Optical Society of America

OCIS Codes
(110.0115) Imaging systems : Imaging through turbulent media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 10, 2013
Revised Manuscript: January 27, 2014
Manuscript Accepted: January 29, 2014
Published: March 10, 2014

Citation
Deqing Ren, Yongtian Zhu, Xi Zhang, Jiangpei Dou, and Gang Zhao, "Solar tomography adaptive optics," Appl. Opt. 53, 1683-1696 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-8-1683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Beckers, “Increasing the size of the isoplanatic patch with multi-conjugate adaptive optics,” in Proceedings of European Southern Observatory Conference and Workshop on Very Large Telescopes and Their Instrumentation, M. H. Ulrich, ed., Vol. 30 of ESO Conference and Workshop Proceedings (European Southern Observatory, 1988), pp. 693–703.
  2. D. C. Johnston and B. M. Welsh, “Analysis of multi-conjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994). [CrossRef]
  3. R. Ragazzoni, E. Marchetti, and F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).
  4. A. Tokovinin and E. J. Viard, “Limiting precision of tomographic phase estimation,” J. Opt. Soc. Am. A A18, 873–882 (2001). [CrossRef]
  5. B. L. Ellerbroek, L. Gilles, and C. R. Vogel, “Numerical simulations of multi-conjugate adaptive optics wave-front reconstruction on giant telescope,” Appl. Opt. 42, 4811–4818 (2003). [CrossRef]
  6. F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, G. Arriagada, V. Fesquet, S. J. Diggs, C. Marchant, G. Gausach, W. N. Rambold, J. Luhrs, S. Walker, E. R. Carrasco-Damele, M. L. Edwards, P. Pessev, R. L. Galvez, T. B. Vucina, C. Araya, A. Gutierrez, A. W. Ebbers, A. Serio, C. Moreno, C. Urrutia, R. Rogers, R. Rojas, C. Trujillo, B. Miller, D. A. Simons, A. Lopez, V. Montes, H. Diaz, F. Daruich, F. Colazo, M. Bec, G. Trancho, M. Sheehan, P. McGregor, P. J. Young, M. C. Doolan, J. van Harmelen, B. L. Ellerbroek, D. Gratadour, and A. Garcia-Rissmann, “GeMS: first on-sky results,” Proc. SPIE 8447, 84470I (2012). [CrossRef]
  7. R. Ragazzoni, J. Farinato, and E. Marchetti, “Adaptive optics for 100  m class telescopes: new challenges require new solutions,” Proc. SPIE 4007, 1076–1087 (2000). [CrossRef]
  8. T. R. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010). [CrossRef]
  9. A. Kellerer, “Layer-oriented adaptive optics for solar telescopes,” Appl. Opt. 51, 5743–5751 (2012). [CrossRef]
  10. T. R. Rimmele, K. Richards, J. Roche, S. Hegwer, and A. Tritschler, “Progress with solar multi-conjugate adaptive optics at NSO,” Proc. SPIE 6272, 627206 (2006). [CrossRef]
  11. T. Berkefeld, D. Soltau, and O. von der Lühe, “Multi-conjugate solar adaptive optics with the VTT and GREGOR,” Proc. SPIE 6272, 627205 (2006). [CrossRef]
  12. T. R. Rimmele and J. Marino, “Solar adaptive optics,” Living Rev. Solar Phys. 8, 2–92 (2011). [CrossRef]
  13. T. Berkefeld and D. Soltau, “EST adaptive optics performance estimations,” Astron. Nachr. 331, 640–643 (2010). [CrossRef]
  14. T. Fusco, S. Meimon, Y. Clenet, M. Cohen, H. Schnetler, J. Paufique, V. Michau, J.-P. Amans, D. Gratadour, C. Petit, C. Robert, P. Jagourel, E. Gendron, G. Rousset, J.-M. Conan, and N. Hubin, “ATLAS: the E-ELT laser tomographic adaptive optics system,” Proc. SPIE, 7736, 773601 (2010). [CrossRef]
  15. T. Berkefeld, personal communication, 2013.
  16. E. J. Seykora, “Solar scintillation and the monitoring of solar seeing,” Sol. Phys. 145, 389–397 (1993). [CrossRef]
  17. J. M. Beckers, “On the relation between scintillation and seeing observations of extended objects,” Sol. Phys. 145, 399–402 (1993). [CrossRef]
  18. J. M. Beckers, “Daytime seeing measurements for the advanced technology Solar telescope,” in Astronomical Site Evaluation in the Visible and Radio Range. ASP Conference Proceedings, J. Vernin, Z. Benkhaldoun, and C. Muñoz-Tuñón, eds. (Astronomical Society of the Pacific, 2002), Vol. 266, pp. 350–357.
  19. G. B. Scharmer and T. I. M. van Werkhoven, “S-DIMM+ height characterization of day-time seeing using solar granulation,” Astron. Astrophys. 513, A25 (2010). [CrossRef]
  20. A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. R. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear solar observatory,” Astron. Astrophys. 542, A2 (2012). [CrossRef]
  21. A. Kellerer, personal communication, 2013.
  22. F. Hill, R. Radick, and M. Collados, “Deriving Cn2(h) from a scintillometer array, project documentation,” , Revision A (2003), p. 18.
  23. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1431 (1965). [CrossRef]
  24. H. Socas-Navarro, J. Beckers, P. Brandt, J. Briggs, T. Brown, W. Brown, M. Collados, C. Denkere, S. Fletcher, S. Hegwer, F. Hill, T. Horst, M. Komsa, J. Kuhn, A. Lecinski, H. Lin, S. Oncley, M. Penn, T. Rimmele, and K. Streander, “Solar site survey for the advanced technology solar telescope. I. Analysis of the seeing data,” Publ. Astron. Soc. Pac. 117, 1296–1305 (2005). [CrossRef]
  25. F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics XIX, E. Wolf, ed. (North Holland, 1981), pp. 281–376.
  26. R. K. Tyson, “Adaptive optics and ground-to-space laser communications,” Appl. Opt. 35, 3640–3646 (1996). [CrossRef]
  27. R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, 2011), Chap. 2, p. 28.
  28. B. L. Ellerbroek, “Wavefront reconstruction algorithms and simulation results for multiconjugate adaptive optics on giant telescopes,” Proc. SPIE 5382, 478–489 (2004). [CrossRef]
  29. A. Tokovinin and M. Le Louarn, “Isoplanatism in a multi-conjugate adaptive optics system,” J. Opt. Soc. Am. A 17, 1819–1827 (2000). [CrossRef]
  30. T. Fusco, J. M. Conan, G. Rousset, L. M. Mugnier, and V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001). [CrossRef]
  31. A. Tokovinin and E. Viard, “Limiting precision of tomographic phase estimation,” J. Opt. Soc. Am. A 18, 873–882 (2001). [CrossRef]
  32. B. Dong, D. Ren, and X. Zhang, “Numerical analysis of modal tomography for solar multi-conjugate adaptive optics,” Res. Astron. Astrophys. 12, 465–471 (2012). [CrossRef]
  33. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994). [CrossRef]
  34. T. Fusco, J.-M. Conan, V. Michau, L. M. Mugnier, and G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” Proc. SPIE 3763, 125–133 (1999). [CrossRef]
  35. B. Femenía and N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165–1176 (2003). [CrossRef]
  36. D. T. Gavel, “Tomography for multi-conjugate adaptive optics systems using laser guide stars,” Proc. SPIE 5490, 1356–1373 (2004). [CrossRef]
  37. D. R. Andersen, J. Stoesz, S. Morris, M. Lloyd-Hart, D. Crampton, T. Butterley, B. Ellerbroek, L. Jolissaint, N. M. Milton, R. Myers, K. Szeto, A. Tokovinin, J. P. Véran, and R. Wilson, “Performance modeling of a wide-field ground-layer adaptive optics system,” Publ. Astron. Soc. Pac. 118, 1574–1590 (2006). [CrossRef]
  38. B. L. Ellerbroek, “Linear systems modeling of adaptive optics in the spatial-frequency domain,” J. Opt. Soc. Am. A 22, 310–322 (2005). [CrossRef]
  39. A. Tokovinin, “Seeing improvement with ground-layer adaptive optics,” Publ. Astron. Soc. Pac. 116, 941–951 (2004). [CrossRef]
  40. M. Lloyd-Hart and N. M. Milton, “Multi-conjugate adaptive optics for a new generation of giant telescopes,” Proc. SPIE 4840, 18–26 (2003). [CrossRef]
  41. A. G. Basden, T. Butterley, R. M. Myers, and R. W. Wilson, “Durham extremely large telescope adaptive optics simulation platform,” Appl. Opt. 46, 1089–1098 (2007). [CrossRef]
  42. B. L. Ellerbroek, “Adaptive optics without borders: performance evaluation in the infinite aperture limit,” Proc. SPIE 5490, 625–636 (2004). [CrossRef]
  43. J. X. Cheng, M. D. Ding, and J. P. Li, “Diagnostics of the heating processes in solar flares using chromospheric spectral lines,” Astrophys. J. 653, 733–738 (2006). [CrossRef]
  44. R. J. Rutten, “Observing the solar chromosphere,” in The Physics of Chromosphere Plasmas, P. Heinzel, I. Dorotovic, and R. J. Rutten, eds., Vol. 268, ASP Conference Series (Astronomical Society of the Pacific, 2007), pp. 27–48.
  45. G. Cauzzi, K. P. Reardon, H. Uitenbroek, F. Cavallini, A. Falchi, R. Falciani, K. Janssen, T. Rimmele, A. Vecchio, and F. Wöger, “The solar chromosphere at high resolution with IBIS. I. New insights from the Ca II 854.2  nm line,” Astron. Astrophys. 480, 515–526 (2008). [CrossRef]
  46. U. Grossmann-Doerth, C. U. Keller, and M. Schüssler, “Observations of the quiet Sun magnetic field,” Astron. Astrophys., 315, 610–617 (1996).
  47. H. Socas-Navarro and J. Sánchez Almeida, “Magnetic properties of photospheric regions with very low magnetic flux,” Astrophys. J. 565, 1323–1334 (2002). [CrossRef]
  48. H. Lin and T. Rimmele, “The granular magnetic fields of the quiet sun,” Astrophys. J. 514, 448–455 (1999). [CrossRef]
  49. W. V. Khomenko, M. Collados, S. K. Solanki, A. Lagg, and J. Trujillo-Bueno, “Quiet-Sun inter-network magnetic fields observed in the infrared,” Astron. Astrophys. 408, 1115–1135 (2003). [CrossRef]
  50. J. Ramsauer, S. K. Solanki, and E. Biémont, “Interesting lines in the infrared solar spectrum. II. Unblended lines between λ 1.0 and λ 1.8  um,” A&AS 113, 71–89 (1995).
  51. J. W. Hardy, Adaptive Optics for Astronomical Telescope (Oxford University, 1998), Chap. 3, p 103.
  52. J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in ESO Conference and Workshop Proceedings on Very Large Telescopes and Their Instrumentation (European Southern Observatory, 1988), p. 693–703.
  53. R. Raggazzoni, E. Dialaiti, J. Farinato, E. Fedrigo, E. Marchetti, M. Tordi, and D. Kirkman, “Multiple field of view layer-oriented adaptive optics. Nearly whole sky coverage on 8  m class and beyond,” Astron. Astrophys. 396, 731–744 (2002). [CrossRef]
  54. M. Nicolle, T. Fusco, V. Michau, G. Rousset, and J. L. Beuzit, “Optimization of star-oriented and layer-oriented wavefront sensing concepts for ground layer adaptive optics,” J. Opt. Soc. Am. A 23, 2233–2245 (2006). [CrossRef]
  55. M. Hart, N. M. Milton, C. Baranec, K. Powell, T. Stalcup, D. McCarthy, C. Kulesa, and E. Bendek, “A ground-layer adaptive optics system with multiple laser guide stars,” Nature 466, 727–729 (2010). [CrossRef]
  56. E. Diolaiti, R. Ragazzoni, and M. Tordi, “Closed loop performance of a layer-oriented multi-conjugate adaptive optics system,” Astron. Astrophys. 372, 710–718 (2001). [CrossRef]
  57. D. Ren and Y. Zhu, “A solar adaptive optics system,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, 2013), Chap. 2, pp. 22–40.
  58. D. Ren, R. Li, X. Zhang, J. Dou, Y. Zhu, and G. Zhao, “The first portable solar and stellar adaptive optics,” Proc. SPIE (submitted).
  59. R. W. Wilson, “SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002). [CrossRef]
  60. T. Butterley, R. W. Wilson, and M. Sarazin, “Determination of the profile of atmospheric optical turbulence strength from SLODAR data,” Mon. Not. R. Astron. Soc. 369, 835–845 (2006). [CrossRef]
  61. A. Tokovinin and T. Travouillon, “Model of optical turbulence profile at Cerro Pachón,” Mon. Not. R. Astron. Soc. 365, 1235–1242 (2006). [CrossRef]
  62. M. Goodwin, C. Jenkins, and A. Lambert, “Improved detection of atmospheric turbulence with SLODAR,” Opt. Express 15, 14844–14860 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited