OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 8 — Mar. 10, 2014
  • pp: 1709–1717

Detection of trace elements in nondegradable organic spent clay waste using optimized dual-pulsed laser induced breakdown spectrometer

Ahmed Asaad I. Khalil, Mohammed A. Gondal, and Mohamed A. Dastageer  »View Author Affiliations


Applied Optics, Vol. 53, Issue 8, pp. 1709-1717 (2014)
http://dx.doi.org/10.1364/AO.53.001709


View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The detection of trace elements present in nondegradable organic spent clay waste has been carried out using an optimized dual-pulsed laser induced breakdown spectrometer. The two laser pulses at 1064 and 266 nm were collinearly collimated and focused on the sample surface in order to enhance the signal intensity. The atomic transition lines at 568.8 nm (Na-I), 504.2 nm (Pb-II), 405.8 nm (Pb –I), 443.56 nm (Ca-I), 469.41 nm (S-I), 520.8 nm (Cr-I), 643 nm (Cd-I), and 928.1 nm (Cl-I) were used as marker wavelengths, and the concentrations of 688, 300, 204, 460, and 2440 ppm of Pb, S, Cd, Cr, and Cl, respectively, were detected in the 5% spent clay in the binder. The limits of detection of Pb, S, Cd, Cr, and Cl were estimated to be 6.7, 17.2, 6.5, 5.1, and 14.8 ppm, respectively, from the calibration curve for each element. In order to confirm the reliability of our system, the concentrations of the reported elements detected using our system were compared to the ones obtained with inductively coupled plasma emission spectroscopy and found to be in good agreement.

© 2014 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: September 9, 2013
Revised Manuscript: December 24, 2013
Manuscript Accepted: January 2, 2014
Published: March 10, 2014

Citation
Ahmed Asaad I. Khalil, Mohammed A. Gondal, and Mohamed A. Dastageer, "Detection of trace elements in nondegradable organic spent clay waste using optimized dual-pulsed laser induced breakdown spectrometer," Appl. Opt. 53, 1709-1717 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-8-1709


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” J. Phys. Sci. 2, 112–118 (2007).
  2. R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008). [CrossRef]
  3. E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010). [CrossRef]
  4. O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010). [CrossRef]
  5. A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta B 63, 305–311 (2008). [CrossRef]
  6. A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge University, 2006).
  7. M. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999). [CrossRef]
  8. J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009). [CrossRef]
  9. M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta B 62, 1311–1320 (2007). [CrossRef]
  10. S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007). [CrossRef]
  11. NIST Atomic spectra database, http://www.nist.gov/physlab/data/asd.cfm .
  12. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002). [CrossRef]
  13. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991). [CrossRef]
  14. C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005). [CrossRef]
  15. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001). [CrossRef]
  16. R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997). [CrossRef]
  17. G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
  18. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002). [CrossRef]
  19. M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).
  20. A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011). [CrossRef]
  21. L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012). [CrossRef]
  22. A. A. I. Khalil, “Spectroscopic studies of UV lead plasmas produced by single and double-pulse laser excitation,” Laser Phys. 23, 015701 (2013). [CrossRef]
  23. B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004). [CrossRef]
  24. M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012). [CrossRef]
  25. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
  26. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004). [CrossRef]
  27. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002). [CrossRef]
  28. V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 59, 327–333 (2004). [CrossRef]
  29. D. L. Wiggins, C. T. Raynor, and J. A. Johnson, “Evidence of inverse Bremsstrahlung in laser enhanced laser-induced plasma,” Phys. Plasmas 17, 103303 (2010). [CrossRef]
  30. L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).
  31. Environmental Regulation Standards for Saudi Industries set by Royal Commission Al-Jubail, Saudi Arabia, http://www.rcjy.gov.sa .
  32. M. G. Natrellla, Experimental Statistics, NBS Handbook 91 (National Institute of Standards and Technology, 1963).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited