OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 9 — Mar. 20, 2014
  • pp: 1826–1831

Terahertz wave generation by nanoconfinement of light

Hamid Reza Zangeneh and Marzieh Asadnia Fard Jahromi  »View Author Affiliations

Applied Optics, Vol. 53, Issue 9, pp. 1826-1831 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a novel nanosource of continuous terahertz (THz) wave radiation based on difference frequency generation (DFG). Both the optical and THz waves are confined in a nanoscale plasmonic waveguide. The results of theoretical investigations indicate that the appropriate geometry of the plasmonic waveguide has a relatively long optical and THz propagation distance (on the order of several tens of wavelengths). Phase matching is obtained using the dispersive properties of the waveguide for generating 0.8 THz at the central optical wavelength of 1.52 μm. Our numerical calculation shows that the conversion efficiency in this waveguide structure can be achieved up to 5 times as large as the micron scale dielectric waveguides and almost 10 times as large as the metallic micron scale waveguides.

© 2014 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: November 28, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 9, 2014
Published: March 19, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Hamid Reza Zangeneh and Marzieh Asadnia Fard Jahromi, "Terahertz wave generation by nanoconfinement of light," Appl. Opt. 53, 1826-1831 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66, 2004. [CrossRef]
  2. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006). [CrossRef]
  3. H. Cao, R. Linke, and A. Nahata, “Broadband generation of THz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004). [CrossRef]
  4. M. Herrmann, M. Tanic, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002). [CrossRef]
  5. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004). [CrossRef]
  6. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439–4444 (2006). [CrossRef]
  7. C. Staus, T. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded waveguide structure supporting only fundamental modes,” Opt. Express 16, 13296–13303 (2008). [CrossRef]
  8. H. R. Zangeneh and M. A. F. Jahromi, “Low loss metallic suspended waveguide for terahertz generation,” Opt. Eng. 51, 099002 (2012). [CrossRef]
  9. A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998). [CrossRef]
  10. V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003). [CrossRef]
  11. A. Marandi and T. E. Darcie, “Design a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs,” Opt. Express 16, 10427–10433 (2008). [CrossRef]
  12. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17, 13502–13515 (2009). [CrossRef]
  13. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005). [CrossRef]
  14. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  15. L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004). [CrossRef]
  16. D. Dai and Sa. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009). [CrossRef]
  17. V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” in Proceedings of Materials Research Society (MRS) Symposium (2004), Vol. 797.
  18. D. Dai and Sa. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18, 17958–17966 (2010). [CrossRef]
  19. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited