OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 9 — Mar. 20, 2014
  • pp: 1938–1946

Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson  »View Author Affiliations


Applied Optics, Vol. 53, Issue 9, pp. 1938-1946 (2014)
http://dx.doi.org/10.1364/AO.53.001938


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 μm, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS2f/1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91cm1 targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N2 collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100–2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (20kHz), in situ measurements of CO concentration in a harsh flow field.

© 2014 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: December 17, 2013
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 13, 2014
Published: March 19, 2014

Citation
R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, "Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy," Appl. Opt. 53, 1938-1946 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-9-1938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011). [CrossRef]
  2. R. Sur, K. Sun, J. B. Jeffries, and R. K. Hanson, “Multi-species laser absorption sensors for in situ monitoring of syngas composition,” Appl. Phys. B, doi:10.1007/s00340-013-5567-2 (to be published). [CrossRef]
  3. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007). [CrossRef]
  4. R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013). [CrossRef]
  5. A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.
  6. Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995). [CrossRef]
  7. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999). [CrossRef]
  8. D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58  μm,” Appl. Opt. 27, 2688–2693 (1988). [CrossRef]
  9. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998). [CrossRef]
  10. X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009). [CrossRef]
  11. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3  μm,” Appl. Opt. 39, 5579–5589 (2000). [CrossRef]
  12. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998). [CrossRef]
  13. W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012). [CrossRef]
  14. P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.
  15. J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103, 959–966 (2011). [CrossRef]
  16. G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009). [CrossRef]
  17. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines,” AIAA J. 45, 772–778 (2007). [CrossRef]
  18. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009). [CrossRef]
  19. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, 2008), p. 597.
  20. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  21. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef]
  22. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006). [CrossRef]
  23. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010). [CrossRef]
  24. W. C. Reynolds, “The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN” (Stanford University, 1986).
  25. A. Farooq, J. B. Jeffries, and R. K. Hanson, “Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7  micron,” Appl. Opt. 48, 6740–6753 (2009). [CrossRef]
  26. A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999). [CrossRef]
  27. J. M. Hartmann, L. Rosenmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000  K temperature range,” Appl. Opt. 27, 3063–3065 (1988). [CrossRef]
  28. E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).
  29. D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).
  30. P. L. Varghese and R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980). [CrossRef]
  31. P. L. Varghese and R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981). [CrossRef]
  32. J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of linewidths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984). [CrossRef]
  33. R. T. Pack, “Pressure broadening of the dipole and Raman lines of CO2 by He and Ar. Temperature dependence,” J. Chem. Phys. 70, 3424 (1979). [CrossRef]
  34. J. Hecht, Understanding Fiber Optics (Pearson/Prentice Hall, 2006), p. 790.
  35. C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), p. 1061.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited