OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 9 — Mar. 20, 2014
  • pp: 1954–1957

Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long-range propagation

Tarun Sharma and Mukesh Kumar  »View Author Affiliations


Applied Optics, Vol. 53, Issue 9, pp. 1954-1957 (2014)
http://dx.doi.org/10.1364/AO.53.001954


View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel (to our knowledge) hybrid plasmonic (HP) hollow waveguide is proposed for nanoscale optical confinement. The light is guided, with improved propagation characteristics, in an air slice sandwiched between metal and silicon. The optical mode in silicon is dragged toward the metal–dielectric (air) interface to make it a HP mode by optimizing the waveguide dimensions. In comparison to the hybrid mode confined in the dielectrics, the air-confined hybrid mode exhibits a smaller effective mode area Am=0.0685/μm2 and longer propagation distance Lp=142μm with a low modal propagation loss of 0.03dB/μm at optimized values of the width and height of the air slice.

© 2014 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: January 7, 2014
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 17, 2014
Published: March 19, 2014

Citation
Tarun Sharma and Mukesh Kumar, "Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long-range propagation," Appl. Opt. 53, 1954-1957 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-9-1954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  3. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009). [CrossRef]
  4. Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18, 19009–19019 (2010). [CrossRef]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005). [CrossRef]
  7. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef]
  8. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  10. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009). [CrossRef]
  11. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010). [CrossRef]
  12. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010). [CrossRef]
  13. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010). [CrossRef]
  14. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010). [CrossRef]
  15. S. A. Maier, “Plasmon waveguides,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 107–129.
  16. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express 20, 11487–11495 (2012). [CrossRef]
  17. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008). [CrossRef]
  18. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009). [CrossRef]
  19. Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011). [CrossRef]
  20. P. Berini, “Air gap in metal strip waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102, 033112 (2007). [CrossRef]
  21. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited